Hide metadata

dc.date.accessioned2019-01-08T13:39:46Z
dc.date.available2019-01-08T13:39:46Z
dc.date.created2018-11-09T14:53:44Z
dc.date.issued2018
dc.identifier.citationPopovas, Andrius Nordlund, Åke Ramsey, Jon P Ormel, Chris W . Pebble dynamics and accretion on to rocky planets - I. Adiabatic and convective models. Monthly notices of the Royal Astronomical Society. 2018, 479(4), 5136-5156
dc.identifier.urihttp://hdl.handle.net/10852/66108
dc.description.abstractWe present nested-grid, high-resolution hydrodynamic simulations of gas and particle dynamics in the vicinity of Mars- to Earth-mass planetary embryos. The simulations extend from the surface of the embryos to a few vertical disc scale heights, with a spatial dynamic range of ∼1.4 × 105. Our results confirm that ‘pebble’-sized particles are readily accreted, with accretion rates continuing to increase up to metre-size ‘boulders’ for a 10 per cent MMSN surface density model. The gas mass flux in and out of the Hill sphere is consistent with the Hill rate, R2 H = 4 10−3 M⊕ yr−1. While smaller size particles mainly track the gas, a net accretion rate of ≈2 10−5 M⊕ yr−1 is reached for 0.3–1 cm particles, even though a significant fraction leaves the Hill sphere again. Effectively, all pebble-sized particles that cross the Bondi sphere are accreted. The resolution of these simulations is sufficient to resolve accretion-driven convection. Convection driven by a nominal accretion rate of 10−6 M⊕ yr−1 does not significantly alter the pebble accretion rate. We find that, due to cancellation effects, accretion rates of pebble-sized particles are nearly independent of disc surface density. As a result, we can estimate accurate growth times for specified particle sizes. For 0.3–1 cm size particles, the growth time from a small seed is ∼0.15 million years for an Earth-mass planet at 1 au and ∼0.1 million years for a Mars mass planet at 1.5 au.en_US
dc.languageEN
dc.publisherBlackwell Publishing
dc.titlePebble dynamics and accretion on to rocky planets - I. Adiabatic and convective modelsen_US
dc.title.alternativeENEngelskEnglishPebble dynamics and accretion on to rocky planets - I. Adiabatic and convective models
dc.typeJournal articleen_US
dc.creator.authorPopovas, Andrius
dc.creator.authorNordlund, Åke
dc.creator.authorRamsey, Jon P
dc.creator.authorOrmel, Chris W
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1628771
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Monthly notices of the Royal Astronomical Society&rft.volume=479&rft.spage=5136&rft.date=2018
dc.identifier.jtitleMonthly notices of the Royal Astronomical Society
dc.identifier.volume479
dc.identifier.issue4
dc.identifier.startpage5136
dc.identifier.endpage5156
dc.identifier.doihttp://dx.doi.org/10.1093/mnras/sty1752
dc.identifier.urnURN:NBN:no-68619
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0035-8711
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/66108/2/sty1752.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata