Hide metadata

dc.date.accessioned2018-09-12T11:03:19Z
dc.date.available2018-09-12T11:03:19Z
dc.date.created2018-02-26T11:05:26Z
dc.date.issued2018
dc.identifier.citationLaestadius, Andre Tellgren, Erik . Density-wave-function mapping in degenerate current-density-functional theory. Physical Review A. Atomic, Molecular, and Optical Physics. 2018, 97(2)
dc.identifier.urihttp://hdl.handle.net/10852/64659
dc.description.abstractCoupled cluster (CC) methods are among the most accurate methods in quantum chemistry. However, the standard CC linear response formulation is not gauge invariant, resulting in errors when modelling properties like optical rotation and electron circular dichroism. Including an explicit unitary orbital rotation in the CC Lagrangian makes the linear response function gauge invariant, but the resulting models are not equivalent to full configuration interaction (FCI) in the untruncated limit. In this contribution, such methods are briefly discussed and it is demonstrated that methods using a nonorthogonal orbital transformation, such as nonorthogonal orbital optimized CC, can converge to FCI in the untruncated limit. This has been disputed in the literature.We show that the particle density ρ ( r ) and the paramagnetic current density jp(r) are not sufficient to determine the set of degenerate ground-state wave functions. This is a general feature of degenerate systems where the degenerate states have different angular momenta. We provide a general strategy for constructing Hamiltonians that share the same ground-state density pair yet differ in degree of degeneracy. We then provide a fully analytical example for a noninteracting system subject to electrostatic potentials and uniform magnetic fields. Moreover, we prove that when (ρ , j p ) is ensemble (v,A)-representable by a mixed state formed from r degenerate ground states, then any Hamiltonian H(v′ , A ′ ) that shares this ground-state density pair must have at least r degenerate ground states in common with H(v,A). Thus, any set of Hamiltonians that shares a ground-state density pair (ρ , j p ) by necessity has to have at least one joint ground state. © 2018 American Physical Societyen_US
dc.languageEN
dc.publisherAmerican Physical Society
dc.titleDensity-wave-function mapping in degenerate current-density-functional theoryen_US
dc.title.alternativeENEngelskEnglishDensity-wave-function mapping in degenerate current-density-functional theory
dc.typeJournal articleen_US
dc.creator.authorLaestadius, Andre
dc.creator.authorTellgren, Erik
cristin.unitcode185,15,12,59
cristin.unitnameTeoretisk kjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1568609
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical Review A. Atomic, Molecular, and Optical Physics&rft.volume=97&rft.spage=&rft.date=2018
dc.identifier.jtitlePhysical Review A. Atomic, Molecular, and Optical Physics
dc.identifier.volume97
dc.identifier.issue2
dc.identifier.doihttp://dx.doi.org/10.1103/physreva.97.022514
dc.identifier.urnURN:NBN:no-67225
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1050-2947
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/64659/2/PhysRevA.97.022514.pdf
dc.type.versionPublishedVersion
cristin.articleid022514
dc.relation.projectNFR/262695
dc.relation.projectNFR/240674
dc.relation.projectEU/639508


Files in this item

Appears in the following Collection

Hide metadata