Hide metadata

dc.date.accessioned2018-08-18T14:45:21Z
dc.date.available2019-06-14T22:45:48Z
dc.date.created2018-06-13T02:09:21Z
dc.date.issued2018
dc.identifier.citationThiyam, Priyadarshini Fiedler, Johannes Buhmann, Stefan Yoshi Persson, Clas Brevik, Iver Håkon Boström, Mathias Parsons, Drew F. . Ice particles sink below the water surface due to a balance of salt, van der Waals and buoyancy forces. Journal of Physical Chemistry C. 2018, 122, 15311-15317
dc.identifier.urihttp://hdl.handle.net/10852/63210
dc.description.abstractAccording to the classical Archimedes’ principle, ice floats in water and has a fraction of its volume above the water surface. However, for very small ice particles, other competing forces such as van der Waals forces due to fluctuating charge distributions and ionic forces due to salt ions and charge on the ice surface also contribute to the force balance. The latter crucially depends on both the pH of the water and the salt concentration. We show that a bulge in the air–water interface due to interaction of surface tension with the rising ice particle becomes significant when the particle radius is greater than 50–100 μm. The role of these forces in governing the initial stages of ice condensation has never been considered. Here, we show that small ice particles can only form below an exclusion zone, from 2 nm (in high salt concentrations) up to 1 μm (in pure water at pH 7) thick, under the water surface. This distance is defined by an equilibrium of upward buoyancy forces and repulsive van der Waals forces. Ionic forces due to salt and ice surface charge push this zone further down. Only after growing to a radius larger than 10 μm, will the ice particles eventually float toward the water surface in agreement with the simple intuition based on Archimedes’ principle. Our result is the first prediction of observable repulsive van der Waals forces between ice particles and the water surface outside a laboratory setting. We posit that it has consequences on the biology of ice water as we predict an exclusion zone free of ice particles near the water surface which is sufficient to support the presence of bacteria. © 2018 American Chemical Societyen_US
dc.languageEN
dc.publisherAmerican Chemical Society (ACS)
dc.titleIce particles sink below the water surface due to a balance of salt, van der Waals and buoyancy forcesen_US
dc.title.alternativeENEngelskEnglishIce particles sink below the water surface due to a balance of salt, van der Waals and buoyancy forces
dc.typeJournal articleen_US
dc.creator.authorThiyam, Priyadarshini
dc.creator.authorFiedler, Johannes
dc.creator.authorBuhmann, Stefan Yoshi
dc.creator.authorPersson, Clas
dc.creator.authorBrevik, Iver Håkon
dc.creator.authorBoström, Mathias
dc.creator.authorParsons, Drew F.
cristin.unitcode185,15,17,0
cristin.unitnameSenter for materialvitenskap og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1590850
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Physical Chemistry C&rft.volume=122&rft.spage=15311&rft.date=2018
dc.identifier.jtitleJournal of Physical Chemistry C
dc.identifier.volume122
dc.identifier.startpage15311
dc.identifier.endpage15317
dc.identifier.doihttp://dx.doi.org/10.1021/acs.jpcc.8b02351
dc.identifier.urnURN:NBN:no-65770
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1932-7447
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/63210/1/iceAirRepulsion.pdf
dc.type.versionAcceptedVersion
dc.relation.projectNFR/221469
dc.relation.projectNFR/250346
dc.relation.projectNFR/243642


Files in this item

Appears in the following Collection

Hide metadata