Hide metadata

dc.date.accessioned2018-08-16T14:23:30Z
dc.date.available2020-04-17T22:46:07Z
dc.date.created2018-04-19T14:46:40Z
dc.date.issued2018
dc.identifier.citationSchweikle, Manuel Zinn, Thomas Lund, Reidar Tiainen, Hanna . Injectable synthetic hydrogel for bone regeneration: Physicochemical characterisation of a high and a low pH gelling system. Materials Science and Engineering C: Materials for Biological Applications. 2018
dc.identifier.urihttp://hdl.handle.net/10852/63020
dc.description.abstractHybrid poly(ethylene glycol)-co-peptide hydrogels are a versatile platform for bone regeneration. For the use as injectable scaffolds, a good understanding of reaction kinetics and physical properties is vital. However, these factors have not yet been comprehensively illuminated. We show that gelation time can be effectively controlled by pH without affecting the elasticity of the formed hydrogels. Maleimide functionalised PEG gels at lower pH and produces more densely cross-linked networks than vinylsulfone functionalised PEG. Both form non-ideal networks. The elastic moduli on the order of a few kPa are in good agreement with the structural characterisation. Primary human osteoblasts cultured in proximity to bulk gels were not adversely affected in vitro. The results demonstrate that hybrid PEG-peptide hydrogels can be tailored to the requirements of in situ gelation. Attributed to their increased structural properties and a higher tolerance towards low pH, maleimide functionalised hydrogels might provide a better alternative for injectable applications.en_US
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleInjectable synthetic hydrogel for bone regeneration: Physicochemical characterisation of a high and a low pH gelling systemen_US
dc.typeJournal articleen_US
dc.creator.authorSchweikle, Manuel
dc.creator.authorZinn, Thomas
dc.creator.authorLund, Reidar
dc.creator.authorTiainen, Hanna
cristin.unitcode185,16,17,62
cristin.unitnameBiomaterialer
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1580413
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Materials Science and Engineering C: Materials for Biological Applications&rft.volume=&rft.spage=&rft.date=2018
dc.identifier.jtitleMaterials Science and Engineering C: Materials for Biological Applications
dc.identifier.doihttps://doi.org/10.1016/j.msec.2018.04.049
dc.identifier.urnURN:NBN:no-65582
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0928-4931
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/63020/1/Schweikle_Injectable%2Bsynthetic%2Bhydrogel_postprint.pdf
dc.type.versionAcceptedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International