Hide metadata

dc.date.accessioned2018-08-12T15:31:53Z
dc.date.available2018-08-12T15:31:53Z
dc.date.created2017-11-12T17:03:49Z
dc.date.issued2017
dc.identifier.citationSkau, Lars Fredrik Andersen, Tom Thrane, Jan-Erik Hessen, Dag Olav . Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ. 2017, 5
dc.identifier.urihttp://hdl.handle.net/10852/62883
dc.description.abstractTemperature and nutrients are key factors affecting the growth, cell size, and physiology of marine phytoplankton. In the ocean, temperature and nutrient availability often co-vary because temperature drives vertical stratification, which further controls nutrient upwelling. This makes it difficult to disentangle the effects of temperature and nutrients on phytoplankton purely from observational studies. In this study, we carried out a factorial experiment crossing two temperatures (13°and 19°C) with two growth regimes (P-limited, semi-continuous batch cultures [“−P”] and nutrient replete batch cultures in turbidostat mode [“+P”]) for three species of common marine haptophytes (Emiliania huxleyi, Chrysochromulina rotalis and Prymnesium polylepis) to address the effects of temperature and nutrient limitation on elemental content and stoichiometry (C:N:P), total RNA, cell size, and growth rate. We found that the main gradient in elemental content and RNA largely was related to nutrient regime and the resulting differences in growth rate and degree of P-limitation, and observed reduced cell volume-specific content of P and RNA (but also N and C in most cases) and higher N:P and C:P in the slow growing −P cultures compared to the fast growing +P cultures. P-limited cells also tended to be larger than nutrient replete cells. Contrary to other recent studies, we found lower N:P and C:P ratios at high temperature. Overall, elemental content and RNA increased with temperature, especially in the nutrient replete cultures. Notably, however, temperature had a weaker–and in some cases a negative–effect on elemental content and RNA under P-limitation. This interaction indicates that the effect of temperature on cellular composition may differ between nutrient replete and nutrient limited conditions, where cellular uptake and storage of excess nutrients may overshadow changes in resource allocation among the non-storage fractions of biomass (e.g. P-rich ribosomes and N-rich proteins). Cell size decreased at high temperature, which is in accordance with general observations.en_US
dc.languageEN
dc.publisherPeerJ Inc.
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleGrowth, stoichiometry and cell size; temperature and nutrient responses in haptophytesen_US
dc.title.alternativeENEngelskEnglishGrowth, stoichiometry and cell size; temperature and nutrient responses in haptophytes
dc.typeJournal articleen_US
dc.creator.authorSkau, Lars Fredrik
dc.creator.authorAndersen, Tom
dc.creator.authorThrane, Jan-Erik
dc.creator.authorHessen, Dag Olav
cristin.unitcode185,15,29,0
cristin.unitnameInstitutt for biovitenskap
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1513269
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PeerJ&rft.volume=5&rft.spage=&rft.date=2017
dc.identifier.jtitlePeerJ
dc.identifier.volume5
dc.identifier.pagecount18
dc.identifier.doihttp://dx.doi.org/10.7717/peerj.3743
dc.identifier.urnURN:NBN:no-65449
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2167-8359
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62883/1/peerj-3743.pdf
dc.type.versionPublishedVersion
cristin.articleide3743
dc.relation.projectANDRE/The authors received no funding for this work.


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International