Hide metadata

dc.date.accessioned2018-08-07T12:21:58Z
dc.date.available2018-08-07T12:21:58Z
dc.date.created2018-01-04T14:18:34Z
dc.date.issued2017
dc.identifier.citationMartinsson, Johan Abdul Azeem, Hafiz Sporre, Moa Kristina Bergström, Robert Ahlberg, Erik Öström, Emilie Kristensson, Adam Swietlicki, Erik Eriksson Stenström, Kristina . Carbonaceous aerosol source apportionment using the Aethalometer model-evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmospheric Chemistry and Physics. 2017, 17(6), 4265-4281
dc.identifier.urihttp://hdl.handle.net/10852/62732
dc.description.abstractWith the present demand on fast and inexpensive aerosol source apportionment methods, the Aethalometer model was evaluated for a full seasonal cycle (June 2014–June 2015) at a rural atmospheric measurement station in southern Sweden by using radiocarbon and levoglucosan measurements. By utilizing differences in absorption of UV and IR, the Aethalometer model apportions carbon mass into wood burning (WB) and fossil fuel combustion (FF) aerosol. In this study, a small modification in the model in conjunction with carbon measurements from thermal–optical analysis allowed apportioned non-light-absorbing biogenic aerosol to vary in time. The absorption differences between WB and FF can be quantified by the absorption Ångström exponent (AAE). In this study AAEWB was set to 1.81 and AAEFF to 1.0. Our observations show that the AAE was elevated during winter (1.36±0.07) compared to summer (1.12±0.07). Quantified WB aerosol showed good agreement with levoglucosan concentrations, both in terms of correlation (R2 = 0.70) and in comparison to reference emission inventories. WB aerosol showed strong seasonal variation with high concentrations during winter (0.65µgm−3, 56% of total carbon) and low concentrations during summer (0.07µgm−3, 6% of total carbon). FF aerosol showed less seasonal dependence; however, black carbon (BC) FF showed clear diurnal patterns corresponding to traffic rush hour peaks. The presumed non-light-absorbing biogenic carbonaceous aerosol concentration was high during summer (1.04µgm−3, 72% of total carbon) and low during winter (0.13µgm−3, 8% of total carbon). Aethalometer model results were further compared to radiocarbon and levoglucosan source apportionment results. The comparison showed good agreement for apportioned mass of WB and biogenic carbonaceous aerosol, but discrepancies were found for FF aerosol mass. The Aethalometer model overestimated FF aerosol mass by a factor of 1.3 compared to radiocarbon and levoglucosan source apportionment. A performed sensitivity analysis suggests that this discrepancy can be explained by interference of non-light-absorbing biogenic carbon during winter. In summary, the Aethalometer model offers a cost-effective yet robust high-time-resolution source apportionment at rural background stations compared to a radiocarbon and levoglucosan alternative.en_US
dc.languageEN
dc.publisherCopernicus
dc.rightsAttribution 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.titleCarbonaceous aerosol source apportionment using the Aethalometer model-evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Swedenen_US
dc.typeJournal articleen_US
dc.creator.authorMartinsson, Johan
dc.creator.authorAbdul Azeem, Hafiz
dc.creator.authorSporre, Moa Kristina
dc.creator.authorBergström, Robert
dc.creator.authorAhlberg, Erik
dc.creator.authorÖström, Emilie
dc.creator.authorKristensson, Adam
dc.creator.authorSwietlicki, Erik
dc.creator.authorEriksson Stenström, Kristina
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1535985
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Atmospheric Chemistry and Physics&rft.volume=17&rft.spage=4265&rft.date=2017
dc.identifier.jtitleAtmospheric Chemistry and Physics
dc.identifier.volume17
dc.identifier.issue6
dc.identifier.startpage4265
dc.identifier.endpage4281
dc.identifier.doihttp://dx.doi.org/10.5194/acp-17-4265-2017
dc.identifier.urnURN:NBN:no-65302
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1680-7316
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62732/2/acp-17-4265-2017.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 3.0 Unported
This item's license is: Attribution 3.0 Unported