Hide metadata

dc.date.accessioned2018-07-17T09:11:42Z
dc.date.available2018-07-17T09:11:42Z
dc.date.created2017-09-28T13:20:50Z
dc.date.issued2017
dc.identifier.citationGratiy, Sergey L. Halnes, Geir Denman, Daniel Hawrylycz, Michael J Koch, Christof Einevoll, Gaute Anastassiou, Costas A . From Maxwell's equations to the theory of current-source density analysis. European Journal of Neuroscience. 2017, 45(8), 1013-1023
dc.identifier.urihttp://hdl.handle.net/10852/62292
dc.description.abstractDespite the widespread use of current‐source density (CSD) analysis of extracellular potential recordings in the brain, the physical mechanisms responsible for the generation of the signal are still debated. While the extracellular potential is thought to be exclusively generated by the transmembrane currents, recent studies suggest that extracellular diffusive, advective and displacement currents—traditionally neglected—may also contribute considerably toward extracellular potential recordings. Here, we first justify the application of the electro‐quasistatic approximation of Maxwell's equations to describe the electromagnetic field of physiological origin. Subsequently, we perform spatial averaging of currents in neural tissue to arrive at the notion of the CSD and derive an equation relating it to the extracellular potential. We show that, in general, the extracellular potential is determined by the CSD of membrane currents as well as the gradients of the putative extracellular diffusion current. The diffusion current can contribute significantly to the extracellular potential at frequencies less than a few Hertz; in which case it must be subtracted to obtain correct CSD estimates. We also show that the advective and displacement currents in the extracellular space are negligible for physiological frequencies while, within cellular membrane, displacement current contributes toward the CSD as a capacitive current. Taken together, these findings elucidate the relationship between electric currents and the extracellular potential in brain tissue and form the necessary foundation for the analysis of extracellular recordings.en_US
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFrom Maxwell's equations to the theory of current-source density analysisen_US
dc.typeJournal articleen_US
dc.creator.authorGratiy, Sergey L.
dc.creator.authorHalnes, Geir
dc.creator.authorDenman, Daniel
dc.creator.authorHawrylycz, Michael J
dc.creator.authorKoch, Christof
dc.creator.authorEinevoll, Gaute
dc.creator.authorAnastassiou, Costas A
cristin.unitcode185,15,4,10
cristin.unitnameKondenserte fasers fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1499705
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=European Journal of Neuroscience&rft.volume=45&rft.spage=1013&rft.date=2017
dc.identifier.jtitleEuropean Journal of Neuroscience
dc.identifier.volume45
dc.identifier.issue8
dc.identifier.startpage1013
dc.identifier.endpage1023
dc.identifier.doihttp://dx.doi.org/10.1111/ejn.13534
dc.identifier.urnURN:NBN:no-64879
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0953-816X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62292/2/Gratiy_et_al-2017-European_Journal_of_Neuroscience.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International