Hide metadata

dc.date.accessioned2018-07-11T12:13:03Z
dc.date.available2018-07-11T12:13:03Z
dc.date.created2017-12-08T10:51:13Z
dc.date.issued2017
dc.identifier.citationWiig, Marie Syre Haug, Halvard Søndenå, Rune Marstein, Erik Stensrud . Modeling of recombination strength at grain boundaries after phosphorus diffusion gettering and the effect of hydrogen passivation. Energy Procedia. 2017, 124, 215-224
dc.identifier.urihttp://hdl.handle.net/10852/62221
dc.description.abstractWe present a method for extracting local recombination rates from photoluminescence images of double side passivated wafers, using simulations of lateral charge carrier diffusion in two dimensions. By fitting the simulated carrier lifetime map with a calibrated photoluminescence image, the recombination profiles in bulk and at grain boundaries (GBs) can be extracted. This method can be used to quantify the GB recombination velocity even if the carrier concentration in bulk is simultaneously affected by recombination at multiple GBs. High performance multicrystalline wafers from a commercially cast ingot with low impurity concentrations were studied. The GBs were completely passivated applying a hydrogenation step simulated contact firing of a hydrogen rich silicon nitride (SiN) film. The bulk carrier recombination profile from simulations of carrier diffusion after phosphorus diffusion gettering is similar to the measured lifetime after phosphorus diffusion gettering and firing. This indicates that the main role of hydrogen passivation is deactivation of the GB recombination. No additional enhancement of the bulk lifetime is observed after hydrogen passivation.en_US
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleModeling of recombination strength at grain boundaries after phosphorus diffusion gettering and the effect of hydrogen passivationen_US
dc.typeJournal articleen_US
dc.creator.authorWiig, Marie Syre
dc.creator.authorHaug, Halvard
dc.creator.authorSøndenå, Rune
dc.creator.authorMarstein, Erik Stensrud
cristin.unitcode185,15,30,20
cristin.unitnameSeksjon for energisystemer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1524584
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Energy Procedia&rft.volume=124&rft.spage=215&rft.date=2017
dc.identifier.jtitleEnergy Procedia
dc.identifier.volume124
dc.identifier.startpage215
dc.identifier.endpage224
dc.identifier.doihttp://dx.doi.org/10.1016/j.egypro.2017.09.255
dc.identifier.urnURN:NBN:no-64804
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1876-6102
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62221/2/energy-procedia-2017-wiig_K.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/228930


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International