Hide metadata

dc.date.accessioned2018-07-09T10:21:23Z
dc.date.available2018-07-09T10:21:23Z
dc.date.created2017-11-07T12:53:17Z
dc.date.issued2017
dc.identifier.citationLund, Marianne Tronstad Aamaas, Borgar Berntsen, Terje Koren Bock, Lisa Burkhardt, Ulrike Fuglestvedt, Jan S. Shine, Keith P . Emission metrics for quantifying regional climate impacts of aviation. Earth System Dynamics. 2017, 8(3), 547-563
dc.identifier.urihttp://hdl.handle.net/10852/62156
dc.description.abstractThis study examines the impacts of emissions from aviation in six source regions on global and regional temperatures. We consider the NOx-induced impacts on ozone and methane, aerosols and contrail-cirrus formation and calculate the global and regional emission metrics global warming potential (GWP), global temperature change potential (GTP) and absolute regional temperature change potential (ARTP). The GWPs and GTPs vary by a factor of 2–4 between source regions. We find the highest aviation aerosol metric values for South Asian emissions, while contrail-cirrus metrics are higher for Europe and North America, where contrail formation is prevalent, and South America plus Africa, where the optical depth is large once contrails form. The ARTP illustrate important differences in the latitudinal patterns of radiative forcing (RF) and temperature response: the temperature response in a given latitude band can be considerably stronger than suggested by the RF in that band, also emphasizing the importance of large-scale circulation impacts. To place our metrics in context, we quantify temperature change in four broad latitude bands following 1 year of emissions from present-day aviation, including CO2. Aviation over North America and Europe causes the largest net warming impact in all latitude bands, reflecting the higher air traffic activity in these regions. Contrail cirrus gives the largest warming contribution in the short term, but remain important at about 15 % of the CO2 impact in several regions even after 100 years. Our results also illustrate both the short- and long-term impacts of CO2: while CO2 becomes dominant on longer timescales, it also gives a notable warming contribution already 20 years after the emission. Our emission metrics can be further used to estimate regional temperature change under alternative aviation emission scenarios. A first evaluation of the ARTP in the context of aviation suggests that further work to account for vertical sensitivities in the relationship between RF and temperature response would be valuable for further use of the concept.en_US
dc.languageEN
dc.publisherCopernicus GmbH
dc.rightsAttribution 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.titleEmission metrics for quantifying regional climate impacts of aviationen_US
dc.typeJournal articleen_US
dc.creator.authorLund, Marianne Tronstad
dc.creator.authorAamaas, Borgar
dc.creator.authorBerntsen, Terje Koren
dc.creator.authorBock, Lisa
dc.creator.authorBurkhardt, Ulrike
dc.creator.authorFuglestvedt, Jan S.
dc.creator.authorShine, Keith P
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1511790
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Earth System Dynamics&rft.volume=8&rft.spage=547&rft.date=2017
dc.identifier.jtitleEarth System Dynamics
dc.identifier.volume8
dc.identifier.issue3
dc.identifier.startpage547
dc.identifier.endpage563
dc.identifier.doihttp://dx.doi.org/10.5194/esd-8-547-2017
dc.identifier.urnURN:NBN:no-64747
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2190-4979
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62156/1/esd-8-547-2017.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 3.0 Unported
This item's license is: Attribution 3.0 Unported