Hide metadata

dc.date.accessioned2018-07-05T15:19:36Z
dc.date.available2018-07-05T15:19:36Z
dc.date.created2018-01-25T14:01:43Z
dc.date.issued2017
dc.identifier.citationTrofaier, Anna Maria Westermann, Sebastian Bartsch, Annett . Progress in space-borne studies of permafrost for climate science: Towards a multi-ECV approach. Remote Sensing of Environment. 2017, 203, 55-70
dc.identifier.urihttp://hdl.handle.net/10852/62034
dc.description.abstractRemotely-sensed climate data records (CDRs) provide a basis for spatially distributed global climate model (GCM) inputs and validation methods. GCMs can take advantage of land surface models (LSMs), which aim to resolve surface energy, water and carbon budgets and hence these LSMs present important boundary conditions at the land-atmosphere interface. Pertinently, satellite data assimilation approaches are essential for improved land surface modelling for northern high latitudes ecosystems where permafrost degradation is reported to be ongoing. Permafrost, however, is an Essential Climate Variable (ECV) that cannot directly be monitored from space. Here, we advocate that CDRs, such as those compiled under the European Space Agency (ESA) Climate Change Initiative (CCI) programme, may be used in combination with permafrost models to improve our understanding of permafrost extent and degradation in a changing climate system. We describe the current types of remotely-sensed surface feature products that are widely used as indicators for permafrost related features. Furthermore, we highlight issues of using these site-specific permafrost proxies related to spatial scale, as well as the uncertainties in establishing present-day permafrost extent itself. Our assessment of the key ECVs that impact on permafrost, demonstrates how models that incorporate EO CDRs have the potential to boost our knowledge of permafrost conditions through better parametrisation of the thermal regime of permafrost soils.en_US
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleProgress in space-borne studies of permafrost for climate science: Towards a multi-ECV approachen_US
dc.typeJournal articleen_US
dc.creator.authorTrofaier, Anna Maria
dc.creator.authorWestermann, Sebastian
dc.creator.authorBartsch, Annett
cristin.unitcode185,15,22,60
cristin.unitnameSeksjon for naturgeografi og hydrologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1551874
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Remote Sensing of Environment&rft.volume=203&rft.spage=55&rft.date=2017
dc.identifier.jtitleRemote Sensing of Environment
dc.identifier.volume203
dc.identifier.startpage55
dc.identifier.endpage70
dc.identifier.doihttp://dx.doi.org/10.1016/j.rse.2017.05.021
dc.identifier.urnURN:NBN:no-64619
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0034-4257
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62034/4/1-s2.0-S0034425717302201-main.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International