Hide metadata

dc.date.accessioned2018-07-05T14:50:47Z
dc.date.available2018-07-05T14:50:47Z
dc.date.created2017-01-30T12:11:46Z
dc.date.issued2017
dc.identifier.citationAas, Kjetil Schanke Gisnås, Kjersti Westermann, Sebastian Berntsen, Terje Koren . A Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere Models. Journal of Hydrometeorology. 2017, 18(1), 49-63
dc.identifier.urihttp://hdl.handle.net/10852/62030
dc.description.abstractA mosaic approach to represent subgrid snow variation in a coupled atmosphere–land surface model (WRF–Noah) is introduced and tested. Solid precipitation is scaled in 10 subgrid tiles based on precalculated snow distributions, giving a consistent, explicit representation of variable snow cover and snow depth on subgrid scales. The method is tested in the Weather Research and Forecasting (WRF) Model for southern Norway at 3-km grid spacing, using the subgrid tiling for areas above the tree line. At a validation site in Finse, the modeled transition time from full snow cover to snow-free ground is increased from a few days with the default snow cover fraction formulation to more than 2 months with the tiling approach, which agrees with in situ observations from both digital camera images and surface temperature loggers. This in turn reduces a cold bias at this site by more than 2°C during the first half of July, with the noontime bias reduced from −5° to −1°C. The improved representation of subgrid snow variation also reduces a cold bias found in the reference simulation on regional scales by up to 0.8°C and increases surface energy fluxes (in particular the latent heat flux), and it resulted in up to 50% increase in monthly (June) precipitation in some of the most affected areas. By simulating individual soil properties for each tile, this approach also accounts for a number of secondary effects of uneven snow distribution resulting in different energy and moisture fluxes in different tiles also after the snow has disappeared. This research was originally published in Journal of Hydrometeorology. © 2017 American Meteorological Societyen_US
dc.languageEN
dc.titleA Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere Modelsen_US
dc.typeJournal articleen_US
dc.creator.authorAas, Kjetil Schanke
dc.creator.authorGisnås, Kjersti
dc.creator.authorWestermann, Sebastian
dc.creator.authorBerntsen, Terje Koren
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1441137
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Hydrometeorology&rft.volume=18&rft.spage=49&rft.date=2017
dc.identifier.jtitleJournal of Hydrometeorology
dc.identifier.volume18
dc.identifier.issue1
dc.identifier.startpage49
dc.identifier.endpage63
dc.identifier.doihttp://dx.doi.org/10.1175/JHM-D-16-0026.1
dc.identifier.urnURN:NBN:no-64615
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1525-755X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/62030/4/jhm-d-16-0026.1.pdf
dc.type.versionPublishedVersion
dc.relation.projectNORDFORSK/57001
dc.relation.projectNFR/255331
dc.relation.projectNFR/214465
dc.relation.projectNFR/244024
dc.relation.projectNOTUR/NORSTORE/NN2806K


Files in this item

Appears in the following Collection

Hide metadata