Hide metadata

dc.date.accessioned2018-07-02T11:57:52Z
dc.date.available2018-07-02T11:57:52Z
dc.date.created2016-07-06T13:59:24Z
dc.date.issued2016
dc.identifier.citationGassmöller, René Dannberg, Juliane Bredow, Eva Steinberger, Bernhard Torsvik, Trond Helge . Major influence of plume-ridge interaction, lithosphere thickness variations, and global mantle flow on hotspot volcanism - The example of Tristan. Geochemistry Geophysics Geosystems. 2016, 17(4), 1454-1479
dc.identifier.urihttp://hdl.handle.net/10852/61993
dc.description.abstractHotspot tracks are thought to originate when mantle plumes impinge moving plates. However, many observed cases close to mid‐ocean ridges do not form a single age‐progressive line, but vary in width, are separated into several volcanic chains, or are distributed over different plates. Here we study plume‐ridge interaction at the example of the Tristan plume, which features all of these complexities. Additionally, the South Atlantic formed close to where plume volcanism began, opening from the south and progressing northward with a notable decrease in magmatism across the Florianopolis Fracture Zone. We study the full evolution of the Tristan plume in a series of three‐dimensional regional models created with the convection code ASPECT. We then compute crustal thickness maps and compare them to seismic profiles and the topography of the South Atlantic. We find that the separation of volcanism into the Tristan and Gough chain can be explained by the position of the plume relative to the ridge and the influence of the global flow field. Plume material below the off‐ridge track can flow toward the ridge and regions of thinner lithosphere, where decompression melting leads to the development of a second volcanic chain resembling the Tristan and Gough hotspot tracks. Agreement with the observations is best for a small plume buoyancy flux of 500 kg/s or a low excess temperature of 150 K. The model explains the distribution of syn‐rift magmatism by hot plume material that flows into the rift and increases melt generation. This research was originally published in Geochemistry, Geophysics, Geosystems. © 2016 American Geophysical Unionen_US
dc.languageEN
dc.publisherThe Geochemical Society
dc.titleMajor influence of plume-ridge interaction, lithosphere thickness variations, and global mantle flow on hotspot volcanism - The example of Tristanen_US
dc.typeJournal articleen_US
dc.creator.authorGassmöller, René
dc.creator.authorDannberg, Juliane
dc.creator.authorBredow, Eva
dc.creator.authorSteinberger, Bernhard
dc.creator.authorTorsvik, Trond Helge
cristin.unitcode185,15,22,40
cristin.unitnameSenter for Jordens utvikling og dynamikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1366530
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Geochemistry Geophysics Geosystems&rft.volume=17&rft.spage=1454&rft.date=2016
dc.identifier.jtitleGeochemistry Geophysics Geosystems
dc.identifier.volume17
dc.identifier.issue4
dc.identifier.startpage1454
dc.identifier.endpage1479
dc.identifier.doihttp://dx.doi.org/10.1002/2015GC006177
dc.identifier.urnURN:NBN:no-64595
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1525-2027
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/61993/2/Gassm-ller_et_al-2016-Geochemistry%252C_Geophysics%252C_Geosystems.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/223272


Files in this item

Appears in the following Collection

Hide metadata