Hide metadata

dc.date.accessioned2018-02-16T08:33:00Z
dc.date.available2018-02-16T08:33:00Z
dc.date.created2018-01-31T15:00:14Z
dc.date.issued2017
dc.identifier.citationRouppe van der Voort, Luc De Pontieu, Bart Walter Scharmer, G. B. de la Cruz Rodriguez, Jaime Martinez-Sykora, Juan Nobrega-Siverio, Daniel Guo, L. J. Jafarzadeh, Shahin Mendes Domingos Pereira, Tiago Hansteen, Viggo Carlsson, Mats Vissers, Gregal Joan Maria . Intermittent Reconnection and Plasmoids in UV Bursts in the Low Solar Atmosphere. Astrophysical Journal Letters. 2017, 851(1)
dc.identifier.urihttp://hdl.handle.net/10852/60146
dc.description.abstractMagnetic reconnection is thought to drive a wide variety of dynamic phenomena in the solar atmosphere. Yet, the detailed physical mechanisms driving reconnection are difficult to discern in the remote sensing observations that are used to study the solar atmosphere. In this Letter, we exploit the high-resolution instruments Interface Region Imaging Spectrograph and the new CHROMIS Fabry–Pérot instrument at the Swedish 1-m Solar Telescope (SST) to identify the intermittency of magnetic reconnection and its association with the formation of plasmoids in so-called UV bursts in the low solar atmosphere. The Si iv 1403 Å UV burst spectra from the transition region show evidence of highly broadened line profiles with often non-Gaussian and triangular shapes, in addition to signatures of bidirectional flows. Such profiles had previously been linked, in idealized numerical simulations, to magnetic reconnection driven by the plasmoid instability. Simultaneous CHROMIS images in the chromospheric Ca ii K 3934 Å line now provide compelling evidence for the presence of plasmoids by revealing highly dynamic and rapidly moving brightenings that are smaller than 0farcs2 and that evolve on timescales of the order of seconds. Our interpretation of the observations is supported by detailed comparisons with synthetic observables from advanced numerical simulations of magnetic reconnection and associated plasmoids in the chromosphere. Our results highlight how subarcsecond imaging spectroscopy sensitive to a wide range of temperatures combined with advanced numerical simulations that are realistic enough to compare with observations can directly reveal the small-scale physical processes that drive the wide range of phenomena in the solar atmosphere. © 2017. The American Astronomical Society. All rights reserved.en_US
dc.languageEN
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishing Ltd.
dc.titleIntermittent Reconnection and Plasmoids in UV Bursts in the Low Solar Atmosphereen_US
dc.typeJournal articleen_US
dc.creator.authorRouppe van der Voort, Luc
dc.creator.authorDe Pontieu, Bart Walter
dc.creator.authorScharmer, G. B.
dc.creator.authorde la Cruz Rodriguez, Jaime
dc.creator.authorMartinez-Sykora, Juan
dc.creator.authorNobrega-Siverio, Daniel
dc.creator.authorGuo, L. J.
dc.creator.authorJafarzadeh, Shahin
dc.creator.authorMendes Domingos Pereira, Tiago
dc.creator.authorHansteen, Viggo
dc.creator.authorCarlsson, Mats
dc.creator.authorVissers, Gregal Joan Maria
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1559011
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astrophysical Journal Letters&rft.volume=851&rft.spage=&rft.date=2017
dc.identifier.jtitleAstrophysical Journal Letters
dc.identifier.volume851
dc.identifier.issue1
dc.identifier.pagecount8
dc.identifier.doihttp://dx.doi.org/10.3847/2041-8213/aa99dd
dc.identifier.urnURN:NBN:no-62831
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2041-8205
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/60146/2/Rouppe_van_der_Voort_2017_ApJL_851_L6.pdf
dc.type.versionPublishedVersion
cristin.articleidL6


Files in this item

Appears in the following Collection

Hide metadata