Hide metadata

dc.date.accessioned2018-02-01T10:13:15Z
dc.date.available2018-02-01T10:13:15Z
dc.date.created2014-03-22T13:26:52Z
dc.date.issued2013
dc.identifier.citationKravitz, Ben Rasch, Philip J. Forster, Piers M. Andrews, Timothy Cole, Jason N.S. Irvine, Peter J. Ji, Duoying Kristjansson, Jon Egill Moore, John C. Muri, Helene Østlie Niemeier, Ulrike Robock, Alan Singh, Balwinder Tilmes, Simone Watanabe, Shingo Yoon, Jin-Ho . An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project. Journal of Geophysical Research - Atmospheres. 2013, 118(23), 13087-13102
dc.identifier.urihttp://hdl.handle.net/10852/59808
dc.description.abstract[1] Analysis of surface and atmospheric energy budget responses to CO2 and solar forcings can be used to reveal mechanisms of change in the hydrological cycle. We apply this energetic perspective to output from 11 fully coupled atmosphere-ocean general circulation models simulating experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), which achieves top-of-atmosphere energy balance between an abrupt quadrupling of CO2 from preindustrial levels (abrupt4xCO2) and uniform solar irradiance reduction. We divide the climate system response into a rapid adjustment, in which climate response is due to adjustment of the atmosphere and land surface on short time scales, and a feedback response, in which the climate response is predominantly due to feedback related to global mean temperature changes. Global mean temperature change is small in G1, so the feedback response is also small. G1 shows a smaller magnitude of land sensible heat flux rapid adjustment than in abrupt4xCO2 and a larger magnitude of latent heat flux adjustment, indicating a greater reduction of evaporation and less land temperature increase than abrupt4xCO2. The sum of surface flux changes in G1 is small, indicating little ocean heat uptake. Using an energetic perspective to assess precipitation changes, abrupt4xCO2 shows decreased mean evaporative moisture flux and increased moisture convergence, particularly over land. However, most changes in precipitation in G1 are in mean evaporative flux, suggesting that changes in mean circulation are small.en_US
dc.languageEN
dc.language.isoenen_US
dc.publisherAmerican Geophysical Union (AGU)
dc.titleAn energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Projecten_US
dc.typeJournal articleen_US
dc.creator.authorKravitz, Ben
dc.creator.authorRasch, Philip J.
dc.creator.authorForster, Piers M.
dc.creator.authorAndrews, Timothy
dc.creator.authorCole, Jason N.S.
dc.creator.authorIrvine, Peter J.
dc.creator.authorJi, Duoying
dc.creator.authorKristjansson, Jon Egill
dc.creator.authorMoore, John C.
dc.creator.authorMuri, Helene Østlie
dc.creator.authorNiemeier, Ulrike
dc.creator.authorRobock, Alan
dc.creator.authorSingh, Balwinder
dc.creator.authorTilmes, Simone
dc.creator.authorWatanabe, Shingo
dc.creator.authorYoon, Jin-Ho
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1123986
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Geophysical Research - Atmospheres&rft.volume=118&rft.spage=13087&rft.date=2013
dc.identifier.jtitleJournal of Geophysical Research - Atmospheres
dc.identifier.volume118
dc.identifier.issue23
dc.identifier.startpage13087
dc.identifier.endpage13102
dc.identifier.doihttp://dx.doi.org/10.1002/2013JD020502
dc.identifier.urnURN:NBN:no-62506
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2169-897X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/59808/2/Kravitz_Muri_etal_2013-jgrd51016.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata