Hide metadata

dc.date.accessioned2018-01-11T14:51:47Z
dc.date.available2018-01-11T14:51:47Z
dc.date.created2016-08-28T17:06:16Z
dc.date.issued2017
dc.identifier.citationMatschiner, Michael Musilová, Zuzana Barth, Julia Maria Isis Starostová, Zuzana Salzburger, Walter Steel, Mike Bouckaert, Remco . Bayesian phylogenetic estimation of clade ages supports trans-Atlantic dispersal of cichlid fishes. Systematic Biology. 2017, 66(1), 3-22
dc.identifier.urihttp://hdl.handle.net/10852/59576
dc.description.abstractDivergence-time estimation based on molecular phylogenies and the fossil record has provided insights into fundamental questions of evolutionary biology. In Bayesian node dating, phylogenies are commonly time calibrated through the specification of calibration densities on nodes representing clades with known fossil occurrences. Unfortunately, the optimal shape of these calibration densities is usually unknown and they are therefore often chosen arbitrarily, which directly impacts the reliability of the resulting age estimates. As possible solutions to this problem, two non-exclusive alternative approaches have recently been developed, the “fossilized birth-death” model and “total-evidence dating”. While these approaches have been shown to perform well under certain conditions, they require including all (or a random subset) of the fossils of each clade in the analysis, rather than just relying on the oldest fossils of clades. In addition, both approaches assume that fossil records of different clades in the phylogeny are all the product of the same underlying fossil sampling rate, even though this rate has been shown to differ strongly between higher-level taxa. We here develop a flexible new approach to Bayesian age estimation that combines advantages of node dating and the fossilized birth-death model. In our new approach, calibration densities are defined on the basis of first fossil occurrences and sampling rate estimates that can be specified separately for all clades. We verify our approach with a large number of simulated datasets, and compare its performance to that of the fossilized birth-death model. We find that our approach produces reliable age estimates that are robust to model violation, on par with the fossilized birth-death model. By applying our approach to a large dataset including sequence data from over 1000 species of teleost fishes as well as 147 carefully selected fossil constraints, we recover a timeline of teleost diversification that is incompatible with previously assumed vicariant divergences of freshwater fishes. Our results instead provide strong evidence for trans-oceanic dispersal of cichlids and other groups of teleost fishes. The final version of this research has been published in Systematic Biology. © 2017 Oxford University Pressen_US
dc.languageEN
dc.titleBayesian phylogenetic estimation of clade ages supports trans-Atlantic dispersal of cichlid fishesen_US
dc.typeJournal articleen_US
dc.creator.authorMatschiner, Michael
dc.creator.authorMusilová, Zuzana
dc.creator.authorBarth, Julia Maria Isis
dc.creator.authorStarostová, Zuzana
dc.creator.authorSalzburger, Walter
dc.creator.authorSteel, Mike
dc.creator.authorBouckaert, Remco
cristin.unitcode185,15,29,50
cristin.unitnameCentre for Ecological and Evolutionary Synthesis
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1376036
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Systematic Biology&rft.volume=66&rft.spage=3&rft.date=2017
dc.identifier.jtitleSystematic Biology
dc.identifier.volume66
dc.identifier.issue1
dc.identifier.startpage3
dc.identifier.endpage22
dc.identifier.doihttp://dx.doi.org/10.1093/sysbio/syw076
dc.identifier.urnURN:NBN:no-62259
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1063-5157
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/59576/1/matschiner_et_al.pdf
dc.type.versionAcceptedVersion
dc.relation.projectNFR/179569
dc.relation.projectNOTUR/NORSTORE/nn9244k


Files in this item

Appears in the following Collection

Hide metadata