Hide metadata

dc.date.accessioned2017-08-11T13:09:40Z
dc.date.available2017-08-11T13:09:40Z
dc.date.created2016-01-06T13:31:07Z
dc.date.issued2015
dc.identifier.citationGjerløw, Eirik Colombo, L. P. L. Eriksen, Hans Kristian Kamfjord Górski, Krzysztof M. Gruppuso, A. Jewell, J. B. Plaszczynski, S Wehus, Ingunn Kathrine . Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation. Astrophysical Journal Supplement Series. 2015, 221(1)
dc.identifier.urihttp://hdl.handle.net/10852/56966
dc.description.abstractWe revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen–Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude–tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop. © American Astronomical Society. All rights reserved.en_US
dc.languageEN
dc.publisherUniversity of Chicago Press
dc.titleOptimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimationen_US
dc.typeJournal articleen_US
dc.creator.authorGjerløw, Eirik
dc.creator.authorColombo, L. P. L.
dc.creator.authorEriksen, Hans Kristian Kamfjord
dc.creator.authorGórski, Krzysztof M.
dc.creator.authorGruppuso, A.
dc.creator.authorJewell, J. B.
dc.creator.authorPlaszczynski, S
dc.creator.authorWehus, Ingunn Kathrine
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1307046
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astrophysical Journal Supplement Series&rft.volume=221&rft.spage=&rft.date=2015
dc.identifier.jtitleAstrophysical Journal Supplement Series
dc.identifier.volume221
dc.identifier.issue1
dc.identifier.pagecount12
dc.identifier.doihttp://dx.doi.org/10.1088/0067-0049/221/1/5
dc.identifier.urnURN:NBN:no-59698
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0067-0049
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/56966/1/Gjerl%25C3%25B8w_2015_ApJS_221_5.pdf
dc.type.versionPublishedVersion
cristin.articleid5


Files in this item

Appears in the following Collection

Hide metadata