Hide metadata

dc.date.accessioned2016-03-02T12:58:21Z
dc.date.available2016-03-02T12:58:21Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/10852/49290
dc.description.abstractThis thesis investigates theoretical aspects of 1-bit signal processing and contains published papers describing many different CMOS implementations that utilize such processing. So-called Suprathreshold Stochastic Resonance (SSR) systems are studied in detail. These systems take a noisy signal as input and then 1-bit quantize it. As it turns out, the combination of noise, coarse quantization, and also integration, results in systems that, perhaps a bit unexpectedly, have quite good performance. This is known as the Stochastic Resonance (SR) phenomenon. Many interesting plots explaining different aspects of the behavior of SSR systems are shown. Detailed explanations of when SSR systems should and should not be used in, are given. This includes analysis of their power consumption. One of the most interesting results in this thesis, is that when the input to the SSR system has flicker noise, the SNR loss in the system will be negligible. With white Gaussian noise, the SNR loss will be much larger, namely 1.96 dB. The flicker-noise result does not seem to have been published before. In addition to using 1-bit signal processing, most of the CMOS implementations also utilize Impulse-Radio Ultra- WideBand (IR-UWB), and yet another commonality is that they can be used for Wireless Sensor Network (WSN) applications. Many of the implementations base much of their signal processing on Continuous-Time Binary-Value (CTBV) signals, which is an unusual way of doing things and therefore an interesting experiment. Some of the CMOS implementations are as follows: Radar, localization, communication, beamforming, bitstream processing, n-path band-pass filter, and power harvesting. All papers are made available in DUO with permissions from the publishers. In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Oslo University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.en_US
dc.language.isoenen_US
dc.relation.haspartPaper 1: H. A. Hjortland, D. T. Wisland, T. S. Lande, C. Limbodal, and K. Meisal. “CMOS Impulse Radar”. In: Norchip Conference, 2006. 24th, pp. 75–79, Linkoping, Nov. 2006. http://dx.doi.org/10.1109/NORCHP.2006.329248
dc.relation.haspartPaper 2: H. A. Hjortland, D. T.Wisland, T. S. Lande, C. Limbodal, and K. Meisal. “Thresholded samplers for UWB impulse radar”. In: Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp. 1210–1213, New Orleans, LA, May 2007. http://dx.doi.org/10.1109/ISCAS.2007.378326
dc.relation.haspartPaper 3: T. S. Lande and H. A. Hjortland. “Impulse Radio technology for Biomedical applications”. In: Biomedical Circuits and Systems Conference, 2007. BIOCAS 2007. IEEE, pp. 67–70, Montreal, Que., Nov. 2007. http://dx.doi.org/10.1109/BIOCAS.2007.4463310
dc.relation.haspartPaper 4: H. A. Hjortland and T. S. Lande. “CTBV Integrated Impulse Radio Design for Biomedical Applications”. Biomedical Circuits and Systems, IEEE Transactions on, Vol. 3, No. 2, pp. 79–88, Apr. 2009. http://dx.doi.org/10.1109/TBCAS.2009.2014962
dc.relation.haspartPaper 5: D. T. Wisland, S. Stoa, N. Andersen, K. Granhaug, T.-S. Lande, and H. A. Hjortland. “CMOS nanoscale impulse radar utilized in 2-dimensional ISAR imaging system”. In: Radar Conference (RADAR), 2012 IEEE, pp. 0714–0719, Atlanta, GA, May 2012. http://dx.doi.org/10.1109/RADAR.2012.6212231
dc.relation.haspartPaper 6: S. Sudalaiyandi, M. Z. Dooghabadi, T. A. Vu, H. A. Hjortland, Ø. Nass, T. S. Lande, and S. E. Hamran. “Power-effcient CTBV symbol detector for UWB applications”. In: Ultra- Wideband (ICUWB), 2010 IEEE International Conference on, pp. 1–4, Nanjing, Sep. 2010. http://dx.doi.org/10.1109/ICUWB.2010.5614422
dc.relation.haspartPaper 7: S. Sudalaiyandi, T.-A. Vu, H. A. Hjortland, O. Nass, and T.-S. Lande. “Continuous-time singlesymbol IR-UWB symbol detection”. In: SOC Conference (SOCC), 2012 IEEE International, pp. 198–201, Niagara Falls, NY, Sep. 2012. http://dx.doi.org/10.1109/SOCC.2012.6398347
dc.relation.haspartPaper 8: T. S. Lande. “Continuous-time highprecision IR-UWB ranging-system in 90 nm CMOS”. In: Solid State Circuits Conference (ASSCC), 2012 IEEE Asian, pp. 349–352, Kobe, Nov. 2012. http://dx.doi.org/10.1109/ASSCC.2012.6570786
dc.relation.haspartPaper 9: S. Sudalaiyandi, H. A. Hjortland, T.-A. Vu, O. Naess, and T. S. Lande. “Live demonstration: IR-UWB transceiver with localization based on ToF technique suitable for wireless capsule endoscopy”. In: Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE, pp. 89–89, Hsinchu, Nov. 2012. http://dx.doi.org/10.1109/BioCAS.2012.6418495
dc.relation.haspartPaper 10: S. Sudalaiyandi, T.-A. Vu, H. A. Hjortland, O. Naess, and T. S. Lande. “Continuous-time symbol detector for IR-UWB rake receiver in 90 nm CMOS”. In: Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on, pp. 487–490, Kaohsiung, Dec. 2012. http://dx.doi.org/10.1109/APCCAS.2012.6419078
dc.relation.haspartPaper 11: S. Sudalaiyandi, H. A. Hjortland, and T. S. Lande. “A continuous-time IR-UWB RAKE receiver for coherent symbol detection”. Analog Integrated Circuits and Signal Processing, Vol. 77, No. 1, pp. 17–27, Oct. 2013. http://dx.doi.org/10.1007/s10470-013-0120-0
dc.relation.haspartPaper 12: M. Z. Dooghabadi, H. A. Hjortland, O. Nass, K. K. Lee, and T. S. Lande. “An IR-UWB Transmitter for Ranging Systems”. Circuits and Systems II: Express Briefs, IEEE Transactions on, Vol. 60, No. 11, pp. 721–725, Nov. 2013. http://dx.doi.org/10.1109/TCSII.2013.2281909
dc.relation.haspartPaper 13: O. Dahl, H. A. Hjortland, T. S. Lande, and D. T. Wisland. “Close range impulse radio beamformers”. In: Ultra-Wideband, 2009. ICUWB 2009. IEEE International Conference on, pp. 205–209, Vancouver, BC, Sep. 2009. http://dx.doi.org/10.1109/ICUWB.2009.5288755
dc.relation.haspartPaper 14: M. Z. Dooghabadi, T. A. Vu, S. Sudalaiyandi, H. A. Hjortland, T. S. Lande, O. Naess, and S. E. Hamran. “Electromagnetic impulse radio camera”. In: NORCHIP, 2009, pp. 1–5, Trondheim, Nov. 2009. http://dx.doi.org/10.1109/NORCHP.2009.5397835
dc.relation.haspartPaper 15 M. Z. Dooghabadi, H. A. Hjortland, and T. S. Lande. “High precision calibrated digital delay element”. Electronics Letters, Vol. 47, No. 9, pp. 564–565, Apr. 28, 2011. http://dx.doi.org/10.1049/el.2011.0395
dc.relation.haspartPaper 16: M. Z. Dooghabadi, H. A. Hjortland, and T. S. B. Lande. “An ultra-wideband receiving antenna array”. In: Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, pp. 2373– 2376, Beijing, China, May 2013. http://dx.doi.org/10.1109/ISCAS.2013.6572355
dc.relation.haspartPaper 17: M. Z. Dooghabadi, H. A. Hjortland, and T. S. B. Lande. “A linear IR-UWB MIMO radar array”. In: Ultra-Wideband (ICUWB), 2013 IEEE International Conference on, pp. 13–19, Sydney, NSW, Sep. 2013. http://dx.doi.org/10.1109/ICUWB.2013.6663814
dc.relation.haspartPaper 18: O. E. Liseth, H. A. Hjortland, and T. S. Lande. “Power effcient cross-correlation beat detection in electrocardiogram analysis using bitstreams”. In: Biomedical Circuits and Systems Conference, 2009. BioCAS 2009. IEEE, pp. 237–240, Beijing, Nov. 2009. http://dx.doi.org/10.1109/BIOCAS.2009.5372041
dc.relation.haspartPaper 19: O. E. Liseth, D. Mo, H. A. Hjortland, T. S. Lande, and D. T. Wisland. “Power effcient cross-correlation using bitstreams”. In: NORCHIP, 2009, pp. 1–4, Trondheim, Nov. 2009. http://dx.doi.org/10.1109/NORCHP.2009.5397844
dc.relation.haspartPaper 20: O. E. Liseth, D. Mo, H. A. Hjortland, T. S. Lande, and D. T. Wisland. “Power-Effcient Cross- Correlation Beat Detection in Electrocardiogram Analysis Using Bitstreams”. Biomedical Circuits and Systems, IEEE Transactions on, Vol. 4, No. 6, pp. 419–425, Dec. 2010. http://dx.doi.org/10.1109/TBCAS.2010.2079933
dc.relation.haspartPaper 21: K. K. Lee, M. Z. Dooghabadi, H. A. Hjortland, O. Naess, and T. S. Lande. “A novel 6.5 pJ/pulse impulse radio pulse generator for RFID tags”. In: Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on, pp. 184–187, Kuala Lumpur, Dec. 2010. http://dx.doi.org/10.1109/APCCAS.2010.5775001
dc.relation.haspartPaper 22: K. K. Lee, M. Z. Dooghabadi, H. A. Hjortland, O. Næss, and T. S. Lande. “A 5.2 pJ/pulse impulse radio pulse generator in 90 nm CMOS”. In: Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, pp. 1299–1302, Rio de Janeiro, May 2011. http://dx.doi.org/10.1109/ISCAS.2011.5937809
dc.relation.haspartPaper 23: T. A. Vu, S. Sudalaiyandi, H. A. Hjortland, O. Nass, T. S. Lande, and S. E. Hamran. “An inductorless 6-Path band-pass filter with tunable center frequency for UWB applications”. In: Ultra-Wideband (ICUWB), 2012 IEEE International Conference on, pp. 164–167, Syracuse, NY, Sep. 2012. http://dx.doi.org/10.1109/ICUWB.2012.6340442
dc.relation.haspartPaper 24: T. A. Vu, S. Sudalaiyandi, M. Z. Dooghabadi, H. A. Hjortland, O. Nass, T. S. Lande, and S. E. Hamran. “Continuous-time CMOS quantizer for ultra-wideband applications”. In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pp. 3757–3760, Paris, France, May 2010. http://dx.doi.org/10.1109/ISCAS.2010.5537745
dc.relation.haspartPaper 25: T. A. Vu, S. Sudalaiyandi, H. A. Hjortland, O. Naess, T. S. Lande, and S. E. Hamran. “A 70-dB, 3.1-10.6-GHz CMOS amplifier in low-power 90 nm CMOS”. In: Circuits and Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium on, pp. 1–4, Seoul, Aug. 2011. http://dx.doi.org/10.1109/MWSCAS.2011.6026639
dc.relation.haspartPaper 26: T. K. Halvorsen, H. A. Hjortland, and T. S. Lande. “Power Harvesting Circuits in 90 nm CMOS”. In: NORCHIP, 2008., pp. 154–157, Tallinn, Nov. 2008. http://dx.doi.org/10.1109/NORCHP.2008.4738301
dc.relation.urihttp://dx.doi.org/10.1109/NORCHP.2006.329248
dc.relation.urihttp://dx.doi.org/10.1109/ISCAS.2007.378326
dc.relation.urihttp://dx.doi.org/10.1109/BIOCAS.2007.4463310
dc.relation.urihttp://dx.doi.org/10.1109/TBCAS.2009.2014962
dc.relation.urihttp://dx.doi.org/10.1109/RADAR.2012.6212231
dc.relation.urihttp://dx.doi.org/10.1109/ICUWB.2010.5614422
dc.relation.urihttp://dx.doi.org/10.1109/SOCC.2012.6398347
dc.relation.urihttp://dx.doi.org/10.1109/ASSCC.2012.6570786
dc.relation.urihttp://dx.doi.org/10.1109/BioCAS.2012.6418495
dc.relation.urihttp://dx.doi.org/10.1109/APCCAS.2012.6419078
dc.relation.urihttp://dx.doi.org/10.1007/s10470-013-0120-0
dc.relation.urihttp://dx.doi.org/10.1109/TCSII.2013.2281909
dc.relation.urihttp://dx.doi.org/10.1109/ICUWB.2009.5288755
dc.relation.urihttp://dx.doi.org/10.1109/NORCHP.2009.5397835
dc.relation.urihttp://dx.doi.org/10.1049/el.2011.0395
dc.relation.urihttp://dx.doi.org/10.1109/ISCAS.2013.6572355
dc.relation.urihttp://dx.doi.org/10.1109/ICUWB.2013.6663814
dc.relation.urihttp://dx.doi.org/10.1109/BIOCAS.2009.5372041
dc.relation.urihttp://dx.doi.org/10.1109/NORCHP.2009.5397844
dc.relation.urihttp://dx.doi.org/10.1109/TBCAS.2010.2079933
dc.relation.urihttp://dx.doi.org/10.1109/APCCAS.2010.5775001
dc.titleSampled and Continuous-Time 1-Bit Signal Processing in CMOS for Wireless Sensor Networksen_US
dc.typeDoctoral thesisen_US
dc.creator.authorHjortland, Håkon A.
dc.identifier.urnURN:NBN:no-53031
dc.type.documentDoktoravhandlingen_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/49290/4/PhD-Hjortland-DUO.pdf


Files in this item

Appears in the following Collection

Hide metadata