Hide metadata

dc.date.accessioned2013-10-31T11:01:27Z
dc.date.available2013-10-31T11:01:27Z
dc.date.issued2013en_US
dc.date.submitted2013-05-02en_US
dc.identifier.citationMahmood, Sohail Musa. NP domino logic gates for Ultra Low Voltage and High Speed applications. Masteroppgave, University of Oslo, 2013en_US
dc.identifier.urihttp://hdl.handle.net/10852/37428
dc.description.abstractIn this thesis we present different configurations of digital circuits exploiting Ultra Low Voltage (ULV) NP domino logic style. The proposed logic style is utilized with the help of Floating gate transistors. The proposed NP domino logic gates are aimed to perform high speed operations in Ultra Low Voltage applications. The presented circuits may operate near the sub-threshold regime where the supply voltage is near the threshold voltage of the transistors. In terms of frequency, speed, robustness, Power Delay Product (PDP) and Energy Delay Product (EDP), the proposed ULV NP domino logic gates may offer significant improvement compared to the conventional CMOS logic gates. Different implementations of NOT, NAND and NOR gates are presented using both conventional and Pass Transistor Logic styles. Further, NAND and NOR gates are used to employ different configurations of Carry gates which is a speed limited factor in many arithmetic operations. These ULV NP domino Carry gates are simulated at different supply voltages in the range of 100mV to 400mV, and the performance results are presented with respect to delay, power, PDP and EDP. The proposed ULV NP domino Carry gates are cascaded together to perform addition in a 32-bit chain. The circuits are operated with respect to worst case scenario where the carry signal propagates through the whole chain. Multi-threshold (MTCMOS) and Variable-threshold (VTCMOS) techniques are employed in the ULV domino 32-bit carry chain in order to reduce the power consumption, meanwhile offering superb speed performance. Although the 32-bit carry chain offers a great advantage of speed improvement in the worst case scenario, the chain also introduces the drawback of enormous power consumption in the idle mode. The work in this thesis has resulted in three papers. Two of these papers represent various configurations of 1-bit ULV NP domino Carry gates, while the third paper examines the performance of one of the proposed ULV NP domino Carry gates in a 32-bit chain. The simulation results presented in this thesis are obtained using a 90nm TSMC CMOS process.eng
dc.language.isoengen_US
dc.titleNP domino logic gates for Ultra Low Voltage and High Speed applicationsen_US
dc.typeMaster thesisen_US
dc.date.updated2013-10-31en_US
dc.creator.authorMahmood, Sohail Musaen_US
dc.subject.nsiVDP::420en_US
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Mahmood, Sohail Musa&rft.title=NP domino logic gates for Ultra Low Voltage and High Speed applications&rft.inst=University of Oslo&rft.date=2013&rft.degree=Masteroppgaveen_US
dc.identifier.urnURN:NBN:no-39030
dc.type.documentMasteroppgaveen_US
dc.identifier.duo179681en_US
dc.contributor.supervisorYngvar Bergen_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/37428/1/Mahmood-Master.pdf


Files in this item

Appears in the following Collection

Hide metadata