Hide metadata

dc.date.accessioned2014-02-06T11:57:28Z
dc.date.available2014-02-06T11:57:28Z
dc.date.issued2012en_US
dc.date.submitted2013-01-15en_US
dc.identifier.citationBlaalid, Rakel. Diversity and community composition of root-associated fungi explored by high throughput sequencing. Doktoravhandling, University of Oslo, 2012en_US
dc.identifier.urihttp://hdl.handle.net/10852/34391
dc.description.abstractInteractions between plant roots and fungi are well known from most terrestrial ecosystems. Mycorrhizal association is the most prominent plant-fungi interaction, where the fungal partners increase the water and nutrient uptake of their host plants. This symbiosis might be especially important in marginal habitats like arctic and alpine environments. The structure, diversity and spatial patterns of the root-associated fungal communities are to a large extent unknown due to previous methodological limitations. The main objective in this thesis was to implement high throughput DNA sequencing to assess the community structure, richness and spatial distribution of root-associated fungal communities in arctic and alpine environments. We focused on one host plant species, namely the ectomycorrhizal herb Bistorta vivipara. Its small and condensed root system enabled us to analyze the entire fungal assemblages associated with individual root systems, using 454 pyrosequencing of ITS1 and/or ITS2 amplicons. All the five studies included in this thesis revealed that the most prominent fungal groups were well-known ectomycorrhizal fungi such as Agaricales, Sebacinales and Thelephorales. Furthermore, ascomycete fungi of the order Helotiales were also recovered frequently across all root systems. Although a high patchiness in fungal community composition generally was observed, some systematic compositional changes along gradients were observed. In a 2x2 m2 local scale study, a spatial autocorrelation was observed at small scales (<0.34 m). Furthermore, a significant compositional difference was observed between the rootassociated fungal communities and adjacent soil fungal communities. Along two primary succession gradients in arctic and alpine areas, a systematic compositional shift was observed. The fungal richness increased along the chronosequences towards the climax vegetation. In a biogeographic survey, where the root-associated fungi were analyzed across Svalbard, a compositional shift was observed that was associated with the latitudinal gradient. Moreover, the fungal richness increased westwards in the more climatic favorable habitats. Overall, the different studies indicate that stochastic processes, possibly related to aerial spore dispersal, are important during fungal community establishment. The conducted studies exemplify that high throughput sequencing is a powerful approach for analyzing complex microbial communities.eng
dc.language.isoengen_US
dc.relation.haspartPaper I Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Xiaoli Z, Kirk P, Kauserud H. 2012. ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, Early View Article first published online: 25 JAN 2013. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at: http://dx.doi.org/10.1111/1755-0998.12065
dc.relation.haspartPaper II Blaalid R, Heegaard E, Halvorsen R, Kauserud H. 2012. Community structure of plant root associated fungi at small spatial scales in an alpine ecosystem. Submitted to Microbiology Open. The paper is removed from the thesis in DUO.
dc.relation.haspartPaper III Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland KI, Fontana G, Kauserud H. 2012. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Molecular Ecology, 21, 1897-1908. The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at: http://dx.doi.org/10.1111/j.1365-294X.2011.05214.x
dc.relation.haspartPaper IV Eidesen PB, Blaalid R, Carlsen T, Kauserud H. 2012. Does latitude make a difference? Comparison of primary succession of root associated fungi along chronosequences in arctic versus alpine glacier forelands. Manuscript, not yet published. The paper is removed from the thesis in DUO. Paper V Blaalid R, Carlsen T, Eidesen PB, Halvorsen R, Høiland K, Kauserud H. 2012. Biogeography of root associated fungal communities in the Arctic Archipelago Svalbard, Norway. Manuscript, not yet published. The paper is removed from the thesis in DUO.
dc.relation.urihttp://dx.doi.org/10.1111/1755-0998.12065
dc.relation.urihttp://dx.doi.org/10.1111/j.1365-294X.2011.05214.x
dc.titleDiversity and community composition of root-associated fungi explored by high throughput sequencingen_US
dc.typeDoctoral thesisen_US
dc.date.updated2014-02-05en_US
dc.creator.authorBlaalid, Rakelen_US
dc.subject.nsiVDP::470en_US
cristin.unitcode152100en_US
cristin.unitnameBiologisk institutten_US
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Blaalid, Rakel&rft.title=Diversity and community composition of root-associated fungi explored by high throughput sequencing&rft.inst=University of Oslo&rft.date=2012&rft.degree=Doktoravhandlingen_US
dc.identifier.urnURN:NBN:no-33108en_US
dc.type.documentDoktoravhandlingen_US
dc.identifier.duo175174en_US
dc.contributor.supervisorHåvard Kauserud, Tor Carlsen, Rune Halvorsen, Klaus Høiland, Anne K. Brystingen_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/34391/1/dravhandling-blaalid.pdf


Files in this item

Appears in the following Collection

Hide metadata