Hide metadata

dc.date.accessioned2014-02-06T11:56:15Z
dc.date.available2014-02-06T11:56:15Z
dc.date.issued2012en_US
dc.date.submitted2013-01-15en_US
dc.identifier.citationSandvik, Guro Katrine. Characterization of oxygen-dependent processes in the anoxia-tolerant crucian carp. Doktoravhandling, University of Oslo, 2012en_US
dc.identifier.urihttp://hdl.handle.net/10852/34389
dc.description.abstractMost vertebrates die within minutes when exposed to anoxia (no oxygen). However, a few exceptions exist, and a champion among these is the crucian carp, which at low temperatures can survive several months in an active state in the complete absence of oxygen. This fish survives anoxia by combining metabolic depression with up-regulating glycolytic ATP production, and by converting the lactate formed in this process into ethanol, allowing it to avoid acidosis. In this way it can survive as the only vertebrate in small ponds that get covered by ice and snow in the winter, blocking oxygen diffusion from air, and light for photosynthesis. Its extreme anoxia tolerance has made this fish a well suited model for investigating adaptation to anoxia. Anoxia related diseases are major causes of death in the industrialized world, and this fish may provide us with insight into mechanisms that can effectively counteract the damage caused by anoxia and reoxygenation of tissues. However, while the mechanisms responsible for maintaining ATP levels in anoxia have been well studied in crucian carp, few studies have looked at how it tackles the numerous other processes that need oxygen. Oxygen-dependent processes in vertebrates include nitric oxide synthesis, monoamine neurotransmitter synthesis by tryptophan and tyrosine hydroxylases and the synthesis of DNA bases by ribonucleotide reductase. Can the crucian carp do without these substances in anoxia or have it found ways around the oxygen dependence of these systems? In this thesis I have investigated the function of these systems using different experimental approaches. First, the systems were investigated on the genetic level by cloning the responsible genes from mRNA and comparing them to other vertebrates. Second, their expression was estimated by measuring their mRNA levels in hypoxia and anoxia. Finally, these systems were investigated on the protein level by looking for adaptations in the function of some of the proteins involved, and by studying how metabolite levels may be adjusted to accommodate the oxygen dependence of these processes. The results indicate an array of adaptations in crucian carp, from storing nitric oxide in the form of nitrite at very high levels, particularly in heart tissue, to adjusting the stability of a radical involved in DNA synthesis. It also disclosed an apparent lack of adaptive change in the enzyme synthetizing serotonin, suggesting that the crucian carp needs to economize with this neurotransmitter until oxygen returns. Apparently as a consequence of a recent genome duplication, numerous previously undiscovered variants of genes involved in oxygen dependent processes were discovered. Of the genes studied, I did not find any dramatic deviations from previously known versions of these genes, but it is clear that these extra gene variants gives evolution additional material to work on for providing new functions, and an increased capacity to adapt to such a serious challenge as anoxia.eng
dc.language.isoengen_US
dc.relation.haspartPaper I Guro K. Sandvik, Göran E. Nilsson, Frank B. Jensen Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp supporting a role in cardioprotection Am. J. Physiol. Regul. Integr. Comp. Physiol. (2012). 302:R468-R477 The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at: http://dx.doi.org/10.1152/ajpregu.00538.2011
dc.relation.haspartPaper II Guro K. Sandvik and Göran Nilsson Characterization of oxygen-dependent enzymes involved in monoamine synthesis in the anoxia-tolerant crucian carp: tryptophan and tyrosine hydroxylase Manuscript, published as: Guro K. Sandvik, Ane B. Tomter, Jonas Bergan, Giorgio Zoppellaro, Anne-Laure Barra, Åsmund K. Røhr, Matthias Kolberg, Stian Ellefsen, K. Kristoffer Andersson, Göran E. Nilsson Studies of ribonucleotide reductase in crucian carp-an oxygen dependent enzyme in an anoxia tolerant vertebrate. Published under the terms of the Creative Commons Attribution License. PLoS One. 2012;7(8):e42784 http://dx.doi.org/10.1371/journal.pone.0042784
dc.relation.haspartPaper III Guro K. Sandvik, Ane B. Tomter, Jonas Bergan, Giorgio Zoppellaro, Anne-Laure Barra, Åsmund K. Røhr, Matthias Kolberg, Stian Ellefsen, K. Kristoffer Andersson, Göran E. Nilsson Protection of the tyrosyl radical in crucian carp ribonucleotide reductase R2 subunits may enable cell division in anoxia Manuscript. The paper is removed from the thesis in DUO.
dc.relation.haspartAppendix Stian Ellefsen, Kåre-Olav Stensløkken, Guro K. Sandvik, Tom A. Kristensen, Göran E. Nilsson Improved normalization of real-time reverse transcriptase polymerase chain reaction data using an external RNA control Anal Biochem. 376 (2008) 83–93 The paper is removed from the thesis in DUO due to publisher restrictions. The published version is available at: http://dx.doi.org/10.1016/j.ab.2008.01.028
dc.relation.urihttp://dx.doi.org/10.1152/ajpregu.00538.2011
dc.relation.urihttp://dx.doi.org/10.1371/journal.pone.0042784
dc.relation.urihttp://dx.doi.org/10.1016/j.ab.2008.01.028
dc.titleCharacterization of oxygen-dependent processes in the anoxia-tolerant crucian carpen_US
dc.typeDoctoral thesisen_US
dc.date.updated2014-02-05en_US
dc.creator.authorSandvik, Guro Katrineen_US
dc.subject.nsiVDP::473en_US
cristin.unitcode152000en_US
cristin.unitnameMolekylær biovitenskapen_US
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Sandvik, Guro Katrine&rft.title=Characterization of oxygen-dependent processes in the anoxia-tolerant crucian carp&rft.inst=University of Oslo&rft.date=2012&rft.degree=Doktoravhandlingen_US
dc.identifier.urnURN:NBN:no-33109en_US
dc.type.documentDoktoravhandlingen_US
dc.identifier.duo175175en_US
dc.contributor.supervisorGöran E. Nilssonen_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/34389/2/dravhandling-sandvik.pdf


Files in this item

Appears in the following Collection

Hide metadata