Hide metadata

dc.date.accessioned2013-03-12T12:23:50Z
dc.date.available2013-03-12T12:23:50Z
dc.date.issued2008en_US
dc.date.submitted2008-10-10en_US
dc.identifier.citationOwe, Simen Gylterud. Elements of glutamate release, action and reuptake. Doktoravhandling, University of Oslo, 2008en_US
dc.identifier.urihttp://hdl.handle.net/10852/28579
dc.description.abstractNeurons conduct electrical signals, and signals pass from one neuron to the next by the use of chemical substances in specialized contacts, synapses. In most synapses, the transmitter is the amino acid glutamate. <br> A machinery of proteins conducts the task of glutamate release, binding/effect (action) and reuptake, at speeds of up to hundreds of times every second. The bits of this machinery are not at all fully understood and differ between areas of the brain. It is the principal aim of this thesis to discuss the role of some of the proteins that are involved and considered essential. The findings can be summarized as follows:<br> First, signal transmission was shown to be enhanced in mossy fibre terminals of the hippocampus when stimulated at a specific range of frequencies, by a mechanism dependent on the proteins synapsin I+II and actin. This was shown by a loss of function and change in morphology in mice genetically altered to lack synapsin I+II. Also, the localization of synapsin III was described at high resolution.<br> Secondly, in the mice described above, signal receiving neurons were found to have increased sensitivity. This was described as a change in composition of receptor proteins (GluR1 and GluR2/3) which glutamate acts upon. The precise location was determined using quantitative immunolabeling electron microscopy. It is suggested that this change can contribute to epileptic seizures seen in the genetically altered mice. <br> Signals are terminated by the removal of glutamate from the extracellular space. Last, a protein (GLAST) that transports glutamate away from the synapse into surrounding cells (glia) was characterized. Specifically, by the use of electrophysiological patch clamping techniques, the number and identity of ions involved in and driving its transporter cycle was determined.eng
dc.language.isoengen_US
dc.relation.haspartPaper I: Gylterud Owe S, Bogen IL, Walaas SI, Storm-Mathisen J, & Bergersen LH (2005). Ultrastructural quantification of glutamate receptors at excitatory synapses in hippocampus of synapsin I+II double knock-out mice. Neuroscience 136, 769-777. The paper is not available in DUO. The published version is available at: http://dx.doi.org/10.1016/j.neuroscience.2005.08.056
dc.relation.haspartPaper II: Owe SG, Marcaggi P, & Attwell D (2006). The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577, 591-599 The paper is not available in DUO. The published version is available at: http://dx.doi.org/10.1113/jphysiol.2006.116830
dc.relation.haspartPaper III: Owe SG, Jensen V, Evergren E, Ruiz A, Shupliakov O, Kullmann DM, Storm-Mathisen J, Walaas SI, Hvalby O, & Bergersen LH (2008). Synapsin- and Actin-Dependent Frequency Enhancement in Mouse Hippocampal Mossy Fiber Synapses. Cereb Cortex [Epub ahead of print]. The paper is not available in DUO.
dc.relation.urihttp://dx.doi.org/10.1016/j.neuroscience.2005.08.056
dc.relation.urihttp://dx.doi.org/10.1113/jphysiol.2006.116830
dc.titleElements of glutamate release, action and reuptakeen_US
dc.typeDoctoral thesisen_US
dc.date.updated2008-10-22en_US
dc.creator.authorOwe, Simen Gylteruden_US
dc.subject.nsiVDP::710en_US
cristin.unitcode131000en_US
cristin.unitnameMedisinske basalfagen_US
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Owe, Simen Gylterud&rft.title=Elements of glutamate release, action and reuptake&rft.inst=University of Oslo&rft.date=2008&rft.degree=Doktoravhandlingen_US
dc.identifier.urnURN:NBN:no-20548en_US
dc.type.documentDoktoravhandlingen_US
dc.identifier.duo85732en_US
dc.contributor.supervisorLinda Hildegard Bergersen, Jon Storm-Mathisenen_US
dc.identifier.bibsys082594287en_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/28579/1/DUO_680_Owe.pdf


Files in this item

Appears in the following Collection

Hide metadata