Hide metadata

dc.date.accessioned2013-03-12T08:27:28Z
dc.date.available2013-03-12T08:27:28Z
dc.date.issued2008en_US
dc.date.submitted2008-07-03en_US
dc.identifier.citationSvåsand, Eldrid. Nanoparticle complex fluids. Doktoravhandling, University of Oslo, 2008en_US
dc.identifier.urihttp://hdl.handle.net/10852/11189
dc.description.abstractThe work presented in this thesis concerns the study of complex nanofluids. The interaction of particles in dispersions under the influence of electric and magnetic fields has been studied. The main focus has been the investigation of the behavior of carbon particle dispersions. A novel type of carbon material, namely carbon cone (CC) material, has been characterized using atomic force microscope, scanning tunnelling microscope and scanning electron microscope. The CC material is a mixed powder consisting of carbon particles with the shape of disks and cones and a small amount of amorphous carbon particles. The length or diameter of the particles vary between 0.5-5 um with thickness varying between 10-50 nm. The results confirm the 5 cone angles as predicted by theory. The dispersion of CC particles in silicon oil was studied under the influence of an electric field. The particles were found to align in an ac electric field and structure formation was observed at very low fields. The growth rate was found to vary exponentially with the electric field. The structure formations were permanent (at zero shear rate), not dissolving when the electric field was turned of. This was attributed to the strong Van der Waals forces associated with carbon particles. Electrorheological measurements were carried out for dispersions with varying CC particle concentrations. All samples showed a Bingham fluid behavior with a finite yield stress. The yield stress was found to depend only weakly on the electric field. The results showed that the ER efficiency as measured by the relative increase in viscosity compared to the zero field viscosity, increases with decreasing concentration with a maximum factor of approximately 10 for the dispersion with lowest particle concentration. This is relatively low compared to commercial ER fluids and was attributed to the high conductivity of the particles and to the low relaxation frequency as determined by impedance measurements. The structure formations could be used to produce one dimensional conductive paths in i.e composites. Carbon cones were also dispersed in ferrofluid to observe their behaviour in a magnetic field. A small increase in the viscosity was obtained for CC in a ferrofluid and this was attributed to purely hydrodynamic forces. No evidence of CC particle alignment was found. The interaction of non-magnetic spherical particles (magnetic holes) in a ferrofluid was studied and used to develop a microrheological method for measuring the local viscosity of the ferrofuid itself. By using two magnetic holes which oscillate in a rotating magnetic field, the apparent viscosity of the ferrofluid was determined. The advantage of this method is the small sample volume needed.eng
dc.language.isonoben_US
dc.relation.haspartPaper 1: G. Helgesen, K.D. Knudsen, J.P. Pinheiro, A.T. Skjeltorp, E. Svåsand, H. Heiberg-Andersen, A. Elgsaeter, T. Garberg, S. Nalum Naess, S. Raaen, M. F. Tverdal, X. Yu and T. B. Melø. "Carbon Cones - a Structure with Unique Properties", in “Nanotubes and Related Nanostructures”, edited by Yoke Khin Yap, Mater. Res. Soc. Symp. Proc. Volume 1057E, Warrendale, PA, 2007. The paper is not available in DUO.
dc.relation.haspartPaper 2: E. Svåsand, G. Helgesen and A. T. Skjeltorp. "Chain formation in a complex fluid containing carbon cones and disks in silicon oil", Colloids and Surfaces A, 308, 67–70 (2007) The paper is not available in DUO. The published version is available at: http://dx.doi.org/10.1016/j.colsurfa.2007.05.030
dc.relation.haspartPaper 3: E. Svåsand, K. de Lange Kristiansen, Ø. G. Martinsen, S. Grimnes, G. Helgesen and A.T. Skjeltorp. "Behavior of carbon cone particle dispersions in electric and magnetic fields", to be submitted. The paper is not available in DUO.
dc.relation.haspartPaper 4: E. Svåsand, J. Akselvoll, A. T. Skjeltorp and G. Helgesen. "Local viscosity measurements using oscillating magnetic holes", J.Applied Physics, 101, 054910 (2007) The paper is not available in DUO. The published version is available at: http://dx.doi.org/10.1063/1.2710300
dc.relation.haspartTechnical report (TR): E.Svåsand, "Scanning probe microscopes - a technical report"},IFE-I 2008/004, April 2008 (Internal IFE report). The paper is not available in DUO.
dc.relation.urihttp://dx.doi.org/10.1016/j.colsurfa.2007.05.030
dc.relation.urihttp://dx.doi.org/10.1063/1.2710300
dc.titleNanoparticle complex fluidsen_US
dc.typeDoctoral thesisen_US
dc.date.updated2008-08-07en_US
dc.creator.authorSvåsand, Eldriden_US
dc.subject.nsiVDP::430en_US
cristin.unitcode150400en_US
cristin.unitnameFysisk institutten_US
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Svåsand, Eldrid&rft.title=Nanoparticle complex fluids&rft.inst=University of Oslo&rft.date=2008&rft.degree=Doktoravhandlingen_US
dc.identifier.urnURN:NBN:no-19730en_US
dc.type.documentDoktoravhandlingen_US
dc.identifier.duo81193en_US
dc.contributor.supervisorGeir Helgesen and Arne Skjeltorpen_US
dc.identifier.bibsys081134746en_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/11189/1/DUO_737_Svaasand.pdf


Files in this item

Appears in the following Collection

Hide metadata