Hide metadata

dc.date.accessioned2024-07-01T10:54:00Z
dc.date.available2024-07-01T10:54:00Z
dc.date.created2024-05-15T13:40:47Z
dc.date.issued2024
dc.identifier.citationHommedal, Ylva Knausgård Bathen, Marianne Etzelmüller Reinertsen, Vilde Mari Johansen, Klaus Magnus H Vines, Lasse Frodason, Ymir Kalmann . Theoretical modeling of defect diffusion in wide bandgap semiconductors. Journal of Applied Physics. 2024, 135(17)
dc.identifier.urihttp://hdl.handle.net/10852/111366
dc.description.abstractSince the 1940s, it has been known that diffusion in crystalline solids occurs due to lattice defects. The diffusion of defects can have a great impact on the processing and heat treatment of materials as the microstructural changes caused by diffusion can influence the material qualities and properties. It is, therefore, vital to be able to control the diffusion. This implies that we need a deep understanding of the interactions between impurities, matrix atoms, and intrinsic defects. The role of density functional theory (DFT) calculations in solid-state diffusion studies has become considerable. The main parameters to obtain in defect diffusion studies with DFT are formation energies, binding energies, and migration barriers. In particular, the utilization of the nudged elastic band and the dimer methods has improved the accuracy of these parameters. In systematic diffusion studies, the combination of experimentally obtained results and theoretical predictions can reveal information about the atomic diffusion processes. The combination of the theoretical predictions and the experimental results gives a unique opportunity to compare parameters found from the different methods and gain knowledge about atomic migration. In this Perspective paper, we present case studies on defect diffusion in wide bandgap semiconductors. The case studies cover examples from the three diffusion models: free diffusion, trap-limited diffusion, and reaction diffusion. We focus on the role of DFT in these studies combined with results obtained with the experimental techniques secondary ion mass spectrometry and deep-level transient spectroscopy combined with diffusion simulations.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleTheoretical modeling of defect diffusion in wide bandgap semiconductors
dc.title.alternativeENEngelskEnglishTheoretical modeling of defect diffusion in wide bandgap semiconductors
dc.typeJournal article
dc.creator.authorHommedal, Ylva Knausgård
dc.creator.authorBathen, Marianne Etzelmüller
dc.creator.authorReinertsen, Vilde Mari
dc.creator.authorJohansen, Klaus Magnus H
dc.creator.authorVines, Lasse
dc.creator.authorFrodason, Ymir Kalmann
cristin.unitcode185,15,17,20
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2268905
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Applied Physics&rft.volume=135&rft.spage=&rft.date=2024
dc.identifier.jtitleJournal of Applied Physics
dc.identifier.volume135
dc.identifier.issue17
dc.identifier.pagecount170902
dc.identifier.doihttps://doi.org/10.1063/5.0205866
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0021-8979
dc.type.versionPublishedVersion
cristin.articleid170902


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International