Hide metadata

dc.date.accessioned2024-05-03T15:22:29Z
dc.date.available2024-05-03T15:22:29Z
dc.date.created2024-04-26T11:12:55Z
dc.date.issued2024
dc.identifier.citationAlonso, Iván Haugen, Håvard Jostein Parreiras Nogueira, Liebert López-Álvarez, Miriam González, Pío López-Peña, Mónica Cantalapiedra, Antonio gonzalez Muñoz, Fernando maria guzon . Enhanced Bone Healing in Critical-Sized Rabbit Femoral Defects: Impact of Helical and Alternate Scaffold Architectures. Polymers. 2024
dc.identifier.urihttp://hdl.handle.net/10852/110725
dc.description.abstract: This study investigates the effect of scaffold architecture on bone regeneration, focusing on 3D-printed polylactic acid-bioceramic calcium phosphate (PLA-bioCaP) composite scaffolds in rabbit femoral condyle critical defects. We explored two distinct scaffold designs to assess their influence on bone healing and scaffold performance. Structures with alternate (0° /90°) and helical (0°/45°/90°/135°/180°) laydown patterns were manufactured with a 3D printer using a fused deposition modeling technique. The scaffolds were meticulously characterized for pore size, strut thickness, porosity, pore accessibility, and mechanical properties. The in vivo efficacy of these scaffolds was evaluated using a femoral condyle critical defect model in eight skeletally mature New Zealand White rabbits. Then, the results were analyzed micro-tomographically, histologically, and histomorphometrically. Our findings indicate that both scaffold architectures are biocompatible and support bone formation. The helical scaffolds, characterized by larger pore sizes and higher porosity, demonstrated significantly greater bone regeneration than the alternate structures. However, their lower mechanical strength presented limitations for use in load-bearing sites.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEnhanced Bone Healing in Critical-Sized Rabbit Femoral Defects: Impact of Helical and Alternate Scaffold Architectures
dc.title.alternativeENEngelskEnglishEnhanced Bone Healing in Critical-Sized Rabbit Femoral Defects: Impact of Helical and Alternate Scaffold Architectures
dc.typeJournal article
dc.creator.authorAlonso, Iván
dc.creator.authorHaugen, Håvard Jostein
dc.creator.authorParreiras Nogueira, Liebert
dc.creator.authorLópez-Álvarez, Miriam
dc.creator.authorGonzález, Pío
dc.creator.authorLópez-Peña, Mónica
dc.creator.authorCantalapiedra, Antonio gonzalez
dc.creator.authorMuñoz, Fernando maria guzon
cristin.unitcode185,16,17,62
cristin.unitnameBiomaterialer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2264875
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Polymers&rft.volume=&rft.spage=&rft.date=2024
dc.identifier.jtitlePolymers
dc.identifier.volume16
dc.identifier.issue9
dc.identifier.doihttps://doi.org/10.3390/polym16091243
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2073-4360
dc.type.versionPublishedVersion
cristin.articleid1243
dc.relation.projectEC/HEU/0072_IBEROS_MAIS_1_E
dc.relation.projectEC/H2020/RC ED431C 2021/19
dc.relation.projectEC/H2020/ED431C 2021/49


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International