Hide metadata

dc.date.accessioned2024-04-30T15:36:02Z
dc.date.available2024-04-30T15:36:02Z
dc.date.created2024-04-26T12:35:44Z
dc.date.issued2024
dc.identifier.citationSchwersenz, Nico Loaiza, Victor Zimmermann, Tim Madroñero, Javier Wimberger, Sandro . Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation. Computer Physics Communications. 2024, 300
dc.identifier.urihttp://hdl.handle.net/10852/110690
dc.description.abstractWe compare two different numerical methods to integrate in time spatially delocalized initial densities using the Schrödinger-Poisson equation system as the evolution law. The basic equation is a nonlinear Schrödinger equation with an auto-gravitating potential created by the wave function density itself. The latter is determined as a solution of Poisson's equation modelling, e.g., non-relativistic gravity. For reasons of complexity, we treat a one-dimensional version of the problem whose numerical integration is still challenging because of the extreme long-range forces (being constant in the asymptotic limit). Both of our methods, a Strang splitting scheme and a basis function approach using B-splines, are compared in numerical convergence and effectivity. Overall, our Strang-splitting evolution compares favourably with the B-spline method. In particular, by using an adaptive time-stepper rather large one-dimensional boxes can be treated. These results give hope for extensions to two spatial dimensions for not too small boxes and large evolution times necessary for describing, for instance, dark matter formation over cosmologically relevant scales.
dc.languageEN
dc.publisherNorth-Holland
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleComparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation
dc.title.alternativeENEngelskEnglishComparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation
dc.typeJournal article
dc.creator.authorSchwersenz, Nico
dc.creator.authorLoaiza, Victor
dc.creator.authorZimmermann, Tim
dc.creator.authorMadroñero, Javier
dc.creator.authorWimberger, Sandro
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2264934
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computer Physics Communications&rft.volume=300&rft.spage=&rft.date=2024
dc.identifier.jtitleComputer Physics Communications
dc.identifier.volume300
dc.identifier.pagecount14
dc.identifier.doihttps://doi.org/10.1016/j.cpc.2024.109192
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0010-4655
dc.type.versionPublishedVersion
cristin.articleid109192


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International