Hide metadata

dc.date.accessioned2024-04-02T15:48:54Z
dc.date.available2024-04-02T15:48:54Z
dc.date.created2023-04-16T13:23:12Z
dc.date.issued2023
dc.identifier.citationKjeldby, Snorre Braathen Nguyen, Phuong Dan García Fernández, Javier Haug, K. Galeckas, Augustinas Jensen, Ingvild Julie Thue Thøgersen, Annett Vines, Lasse Prytz, Øystein . Optical properties of ZnFe2O4 nanoparticles and Fe-decorated inversion domain boundaries in ZnO. Nanoscale Advances. 2023(7), 2102-2110
dc.identifier.urihttp://hdl.handle.net/10852/110237
dc.description.abstractThe maximum efficiency of solar cells utilizing a single layer for photovoltaic conversion is given by the single junction Shockley–Queisser limit. In tandem solar cells, a stack of materials with different band gaps contribute to the conversion, enabling tandem cells to exceed the single junction Shockley–Queisser limit. An intriguing variant of this approach is to embed semiconducting nanoparticles in a transparent conducting oxide (TCO) solar cell front contact. This alternative route would enhance the functionality of the TCO layer, allowing it to participate directly in photovoltaic conversion via photon absorption and charge carrier generation in the nanoparticles. Here, we demonstrate the functionalization of ZnO through incorporation of either ZnFe2O4 spinel nanoparticles (NPs) or inversion domain boundaries (IDBs) decorated by Fe. Diffuse reflectance spectroscopy and electron energy loss spectroscopy show that samples containing spinel particles and samples containing IDBs decorated by Fe both display enhanced absorption in the visible range at around 2.0 and 2.6 eV. This striking functional similarity was attributed to the local structural similarity around Fe-ions in spinel ZnFe2O4 and at Fe-decorated basal IDBs. Hence, functional properties of the ZnFe2O4 arise already for the two-dimensional basal IDBs, from which these planar defects behave like two-dimensional spinel-like inclusions in ZnO. Cathodoluminescence spectra reveal an increased luminescence around the band edge of spinel ZnFe2O4 when measuring on the spinel ZnFe2O4 NPs embedded in ZnO, whereas spectra from Fe-decorated IDBs could be deconvoluted into luminescence contributions from bulk ZnO and bulk ZnFe2O4.
dc.description.abstractOptical properties of ZnFe2O4 nanoparticles and Fe-decorated inversion domain boundaries in ZnO
dc.languageEN
dc.rightsAttribution-NonCommercial 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.titleOptical properties of ZnFe2O4 nanoparticles and Fe-decorated inversion domain boundaries in ZnO
dc.title.alternativeENEngelskEnglishOptical properties of ZnFe2O4 nanoparticles and Fe-decorated inversion domain boundaries in ZnO
dc.typeJournal article
dc.creator.authorKjeldby, Snorre Braathen
dc.creator.authorNguyen, Phuong Dan
dc.creator.authorGarcía Fernández, Javier
dc.creator.authorHaug, K.
dc.creator.authorGaleckas, Augustinas
dc.creator.authorJensen, Ingvild Julie Thue
dc.creator.authorThøgersen, Annett
dc.creator.authorVines, Lasse
dc.creator.authorPrytz, Øystein
cristin.unitcode185,15,17,0
cristin.unitnameSenter for materialvitenskap og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2141063
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nanoscale Advances&rft.volume=&rft.spage=2102&rft.date=2023
dc.identifier.jtitleNanoscale Advances
dc.identifier.volume5
dc.identifier.issue7
dc.identifier.startpage2102
dc.identifier.endpage2110
dc.identifier.doihttps://doi.org/10.1039/d2na00849a
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2516-0230
dc.type.versionPublishedVersion
dc.relation.projectNFR/287729
dc.relation.projectNFR/197405
dc.relation.projectUIO/petcat
dc.relation.projectNFR/295864


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial 3.0 Unported
This item's license is: Attribution-NonCommercial 3.0 Unported