Hide metadata

dc.date.accessioned2024-03-23T17:23:07Z
dc.date.available2024-03-23T17:23:07Z
dc.date.created2023-11-28T13:03:52Z
dc.date.issued2023
dc.identifier.citationUmlauft, Josefine Johnson, Christopher W. Roux, Philippe Trugman, Daniel Taylor Lecointre, Albanne Walpersdorf, Andrea Nanni, Ugo Gimbert, Florent Rouet-Leduc, Bertrand Hulbert, Claudia Lüdtke, Stefan Marton, Sascha Johnson, Paul A. . Mapping Glacier Basal Sliding Applying Machine Learning. Journal of Geophysical Research (JGR): Earth Surface. 2023, 128(11)
dc.identifier.urihttp://hdl.handle.net/10852/110057
dc.description.abstractAbstract During the RESOLVE project (“High‐resolution imaging in subsurface geophysics: development of a multi‐instrument platform for interdisciplinary research”), continuous surface displacement and seismic array observations were obtained on Glacier d’Argentière in the French Alps for 35 days in May 2018. The data set is used to perform a detailed study of targeted processes within the highly dynamic cryospheric environment. In particular, the physical processes controlling glacial basal motion are poorly understood and remain challenging to observe directly. Especially in the Alpine region for temperate based glaciers where the ice rapidly responds to changing climatic conditions and thus, processes are strongly intermittent in time and heterogeneous in space. Spatially dense seismic and Global Positioning System (GPS) measurements are analyzed applying machine learning to gain insight into the processes controlling glacial motions of Glacier d’Argentière. Using multiple bandpass‐filtered copies of the continuous seismic waveforms, we compute energy‐based features, develop a matched field beamforming catalog and include meteorological observations. Features describing the data are analyzed with a gradient boosting decision tree model to directly estimate the GPS displacements from the seismic noise. We posit that features of the seismic noise provide direct access to the dominant parameters that drive displacement on the highly variable and unsteady surface of the glacier. The machine learning model infers daily fluctuations and longer term trends. The results show on‐ice displacement rates are strongly modulated by activity at the base of the glacier. The techniques presented provide a new approach to study glacial basal sliding and discover its full complexity.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleMapping Glacier Basal Sliding Applying Machine Learning
dc.title.alternativeENEngelskEnglishMapping Glacier Basal Sliding Applying Machine Learning
dc.typeJournal article
dc.creator.authorUmlauft, Josefine
dc.creator.authorJohnson, Christopher W.
dc.creator.authorRoux, Philippe
dc.creator.authorTrugman, Daniel Taylor
dc.creator.authorLecointre, Albanne
dc.creator.authorWalpersdorf, Andrea
dc.creator.authorNanni, Ugo
dc.creator.authorGimbert, Florent
dc.creator.authorRouet-Leduc, Bertrand
dc.creator.authorHulbert, Claudia
dc.creator.authorLüdtke, Stefan
dc.creator.authorMarton, Sascha
dc.creator.authorJohnson, Paul A.
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2203821
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Geophysical Research (JGR): Earth Surface&rft.volume=128&rft.spage=&rft.date=2023
dc.identifier.jtitleJournal of Geophysical Research (JGR): Earth Surface
dc.identifier.volume128
dc.identifier.issue11
dc.identifier.pagecount20
dc.identifier.doihttps://doi.org/10.1029/2023JF007280
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2169-9003
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International