Hide metadata

dc.date.accessioned2024-03-17T17:37:42Z
dc.date.available2024-03-17T17:37:42Z
dc.date.created2023-12-18T13:29:03Z
dc.date.issued2023
dc.identifier.citationSkaar, Jan-Eirik Welle Haug, Nicolai Stasik, Alexander Johannes Einevoll, Gaute Tøndel, Kristin . Metamodelling of a two-population spiking neural network. PLoS Computational Biology. 2023, 19(11)
dc.identifier.urihttp://hdl.handle.net/10852/109719
dc.description.abstractIn computational neuroscience, hypotheses are often formulated as bottom-up mechanistic models of the systems in question, consisting of differential equations that can be numerically integrated forward in time. Candidate models can then be validated by comparison against experimental data. The model outputs of neural network models depend on both neuron parameters, connectivity parameters and other model inputs. Successful model fitting requires sufficient exploration of the model parameter space, which can be computationally demanding. Additionally, identifying degeneracy in the parameters, i.e. different combinations of parameter values that produce similar outputs, is of interest, as they define the subset of parameter values consistent with the data. In this computational study, we apply metamodels to a two-population recurrent spiking network of point-neurons, the so-called Brunel network. Metamodels are data-driven approximations to more complex models with more desirable computational properties, which can be run considerably faster than the original model. Specifically, we apply and compare two different metamodelling techniques, masked autoregressive flows (MAF) and deep Gaussian process regression (DGPR), to estimate the power spectra of two different signals; the population spiking activities and the local field potential. We find that the metamodels are able to accurately model the power spectra in the asynchronous irregular regime, and that the DGPR metamodel provides a more accurate representation of the simulator compared to the MAF metamodel. Using the metamodels, we estimate the posterior probability distributions over parameters given observed simulator outputs separately for both LFP and population spiking activities. We find that these distributions correctly identify parameter combinations that give similar model outputs, and that some parameters are significantly more constrained by observing the LFP than by observing the population spiking activities.
dc.languageEN
dc.publisherPublic Library of Science (PLoS)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleMetamodelling of a two-population spiking neural network
dc.title.alternativeENEngelskEnglishMetamodelling of a two-population spiking neural network
dc.typeJournal article
dc.creator.authorSkaar, Jan-Eirik Welle
dc.creator.authorHaug, Nicolai
dc.creator.authorStasik, Alexander Johannes
dc.creator.authorEinevoll, Gaute
dc.creator.authorTøndel, Kristin
cristin.unitcode185,15,4,0
cristin.unitnameFysisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2214893
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLoS Computational Biology&rft.volume=19&rft.spage=&rft.date=2023
dc.identifier.jtitlePLoS Computational Biology
dc.identifier.volume19
dc.identifier.issue11
dc.identifier.pagecount26
dc.identifier.doihttps://doi.org/10.1371/journal.pcbi.1011625
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1553-734X
dc.type.versionPublishedVersion
cristin.articleide1011625
dc.relation.projectNFR/754304
dc.relation.projectNFR/248828
dc.relation.projectEC/H2020/945539
dc.relation.projectNFR/250128


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International