Hide metadata

dc.date.accessioned2024-03-16T17:54:20Z
dc.date.available2024-03-16T17:54:20Z
dc.date.created2023-10-25T13:44:55Z
dc.date.issued2023
dc.identifier.citationFrehan, Sean K. Dsouza, Lolita Li, Xinmeng Eríc, Vesna Jansen, Thomas L. C. Mul, Guido Holzwarth, Alfred R. Buda, Francesco Sevink, G. J. Agur de Groot, Huub J. M. Huijser, Annemarie . Photon Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of Chlorobium tepidum and the Role of Supramolecular Dynamics. Journal of Physical Chemistry B. 2023, 127(35), 7581-7589
dc.identifier.urihttp://hdl.handle.net/10852/109686
dc.description.abstractThe antenna complex of green sulfur bacteria, the chlorosome, is one of the most efficient supramolecular systems for efficient long-range exciton transfer in nature. Femtosecond transient absorption experiments provide new insight into how vibrationally induced quantum overlap between exciton states supports highly efficient long-range exciton transfer in the chlorosome of Chlorobium tepidum. Our work shows that excitation energy is delocalized over the chlorosome in <1 ps at room temperature. The following exciton transfer to the baseplate occurs in ∼3 to 5 ps, in line with earlier work also performed at room temperature, but significantly faster than at the cryogenic temperatures used in previous studies. This difference can be attributed to the increased vibrational motion at room temperature. We observe a so far unknown impact of the excitation photon energy on the efficiency of this process. This dependency can be assigned to distinct optical domains due to structural disorder, combined with an exciton trapping channel competing with exciton transfer toward the baseplate. An oscillatory transient signal damped in <1 ps has the highest intensity in the case of the most efficient exciton transfer to the baseplate. These results agree well with an earlier computational finding of exciton transfer driven by low-frequency rotational motion of molecules in the chlorosome. Such an exciton transfer process belongs to the quantum coherent regime, for which the Förster theory for intermolecular exciton transfer does not apply. Our work hence strongly indicates that structural flexibility is important for efficient long-range exciton transfer in chlorosomes.
dc.languageEN
dc.publisherACS Publications
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titlePhoton Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of Chlorobium tepidum and the Role of Supramolecular Dynamics
dc.title.alternativeENEngelskEnglishPhoton Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of Chlorobium tepidum and the Role of Supramolecular Dynamics
dc.typeJournal article
dc.creator.authorFrehan, Sean K.
dc.creator.authorDsouza, Lolita
dc.creator.authorLi, Xinmeng
dc.creator.authorEríc, Vesna
dc.creator.authorJansen, Thomas L. C.
dc.creator.authorMul, Guido
dc.creator.authorHolzwarth, Alfred R.
dc.creator.authorBuda, Francesco
dc.creator.authorSevink, G. J. Agur
dc.creator.authorde Groot, Huub J. M.
dc.creator.authorHuijser, Annemarie
cristin.unitcode185,15,12,70
cristin.unitnameHylleraas-senteret
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2188412
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Physical Chemistry B&rft.volume=127&rft.spage=7581&rft.date=2023
dc.identifier.jtitleJournal of Physical Chemistry B
dc.identifier.volume127
dc.identifier.issue35
dc.identifier.startpage7581
dc.identifier.endpage7589
dc.identifier.doihttps://doi.org/10.1021/acs.jpcb.3c05282
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1520-6106
dc.type.versionPublishedVersion
dc.relation.projectNFR/262695


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International