Hide metadata

dc.date.accessioned2024-03-10T18:00:50Z
dc.date.available2024-03-10T18:00:50Z
dc.date.created2024-01-02T15:09:53Z
dc.date.issued2023
dc.identifier.citationKlocker, Andreas Munday, David Gayen, Bishakhdatta Roquet, Fabien Lacasce, Joseph Henry . Deep-Reaching Global Ocean Overturning Circulation Generated by Surface Buoyancy Forcing. Tellus A: Dynamic Meteorology and Oceanography. 2023, 75(1), 392-409
dc.identifier.urihttp://hdl.handle.net/10852/109408
dc.description.abstractIn contrast with the atmosphere, which is heated from below by solar radiation, the ocean is both heated and cooled from above. To drive a deep-reaching overturning circulation in this context, it is generally assumed that either intense interior mixing by winds and internal tides, or wind-driven upwelling is required; in their absence, the circulation is thought to collapse to a shallow surface cell. We demonstrate, using a primitive equation model with an idealized domain and no wind forcing, that the surface temperature forcing can in fact drive an interhemispheric overturning provided that there is an open channel unblocked in the zonal direction, such as in the Southern Ocean. With this geometry, rotating horizontal convection, in combination with asymmetric surface cooling between the north and south, drives a deep-reaching two-cell overturning circulation. The resulting vertical mid-depth stratification closely resembles that of the real ocean, suggesting that wind-driven pumping is not necessary to produce a deep-reaching overturning circulation, and that buoyancy forcing plays a more important role than is usually assumed.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDeep-Reaching Global Ocean Overturning Circulation Generated by Surface Buoyancy Forcing
dc.title.alternativeENEngelskEnglishDeep-Reaching Global Ocean Overturning Circulation Generated by Surface Buoyancy Forcing
dc.typeJournal article
dc.creator.authorKlocker, Andreas
dc.creator.authorMunday, David
dc.creator.authorGayen, Bishakhdatta
dc.creator.authorRoquet, Fabien
dc.creator.authorLacasce, Joseph Henry
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2219172
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Tellus A: Dynamic Meteorology and Oceanography&rft.volume=75&rft.spage=392&rft.date=2023
dc.identifier.jtitleTellus A: Dynamic Meteorology and Oceanography
dc.identifier.volume75
dc.identifier.issue1
dc.identifier.startpage392
dc.identifier.endpage409
dc.identifier.doihttps://doi.org/10.16993/tellusa.3231
dc.subject.nviVDP::Meteorologi: 453
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0280-6495
dc.type.versionPublishedVersion
dc.relation.projectNFR/302743
dc.relation.projectOTHER/Australian Research Council Future Fellowship FT180100037


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International