Hide metadata

dc.date.accessioned2024-03-07T23:51:35Z
dc.date.available2024-03-07T23:51:35Z
dc.date.created2023-10-13T12:37:20Z
dc.date.issued2023
dc.identifier.citationBarras, Fabian Thøgersen, Kjetil Aharonov, Einat Renard, Francois . How Do Earthquakes Stop? Insights From a Minimal Model of Frictional Rupture. Journal of Geophysical Research (JGR): Solid Earth. 2023, 128(8)
dc.identifier.urihttp://hdl.handle.net/10852/109252
dc.description.abstractThe question “what arrests an earthquake rupture?” sits at the heart of any potential prediction of earthquake magnitude. Here, we use a one-dimensional, thin-elastic-strip, minimal model, to illuminate the basic physical parameters that may control the arrest of large ruptures. The generic formulation of the model allows for wrapping various earthquake arrest scenarios into the variations of two dimensionless variables Tk (initial dimensionless stress parameter on the fault) and Gc (dimensionless fracture energy), valid for both in-plane and antiplane shear loading. Our continuum model is equivalent to the standard Burridge-Knopoff model, with an added characteristic length scale, H, that corresponds to either the thickness of the damage zone for strike-slip faults or to the thickness of the downward moving plate for subduction settings. We simulate the propagation and arrest of frictional ruptures and derive closed-form expressions to predict rupture arrest under different conditions. Our generic model illuminates the different energy budget that mediates crack- and pulse-like rupture propagation and arrest. It provides additional predictions such as generic stable pulse-like rupture solutions, stress drop independence of the rupture size, the existence of back-propagating fronts, and predicts that asymmetric slip profiles arise under certain pre-stress conditions. These diverse features occur also in natural earthquakes, and the fact that they can all be predicted by a single minimal framework is encouraging and pave the way for future developments of this model.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleHow Do Earthquakes Stop? Insights From a Minimal Model of Frictional Rupture
dc.title.alternativeENEngelskEnglishHow Do Earthquakes Stop? Insights From a Minimal Model of Frictional Rupture
dc.typeJournal article
dc.creator.authorBarras, Fabian
dc.creator.authorThøgersen, Kjetil
dc.creator.authorAharonov, Einat
dc.creator.authorRenard, Francois
cristin.unitcode185,15,18,10
cristin.unitnameNJORD geofag - senter for studier av jordens fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2184434
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Geophysical Research (JGR): Solid Earth&rft.volume=128&rft.spage=&rft.date=2023
dc.identifier.jtitleJournal of Geophysical Research (JGR): Solid Earth
dc.identifier.volume128
dc.identifier.issue8
dc.identifier.pagecount0
dc.identifier.doihttps://doi.org/10.1029/2022JB026070
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2169-9313
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International