Hide metadata

dc.date.accessioned2024-03-03T18:19:29Z
dc.date.available2024-03-03T18:19:29Z
dc.date.created2023-03-07T18:21:08Z
dc.date.issued2023
dc.identifier.citationHong, Wanwan Luthra, Mahika Jakobsen, Joakim B. Madsen, Monica R. Castro, Abril C Hammershøj, Hans Christian D. Pedersen, Steen U. Balcells Badia, David Skrydstrup, Troels Daasbjerg, Kim Nova, Ainara . Exploring the Parameters Controlling Product Selectivity in Electrochemical CO<inf>2</inf> Reduction in Competition with Hydrogen Evolution Employing Manganese Bipyridine Complexes. ACS Catalysis. 2023, 3109-3119
dc.identifier.urihttp://hdl.handle.net/10852/108962
dc.description.abstractSelective reduction of CO2 is an efficient solution for producing nonfossil-based chemical feedstocks and simultaneously alleviating the increasing atmospheric concentration of this greenhouse gas. With this aim, molecular electrocatalysts are being extensively studied, although selectivity remains an issue. In this work, a combined experimental–computational study explores how the molecular structure of Mn-based complexes determines the dominant product in the reduction of CO2 to HCOOH, CO, and H2. In contrast to previous Mn(bpy-R)(CO)3Br catalysts containing alkyl amines in the vicinity of the Br ligand, here, we report that bpy-based macrocycles locking these amines at the side opposite to the Br ligand change the product selectivity from HCOOH to H2. Ab initio molecular dynamics simulations of the active species showed that free rotation of the Mn(CO)3 moiety allows for the approach of the protonated amine to the reactive center yielding a Mn-hydride intermediate, which is the key in the formation of H2 and HCOOH. Additional studies with DFT methods showed that the macrocyclic moiety hinders the insertion of CO2 to the metal hydride favoring the formation of H2 over HCOOH. Further, our results suggest that the minor CO product observed experimentally is formed when CO2 adds to Mn on the side opposite to the amine ligand before protonation. These results show how product selectivity can be modulated by ligand design in Mn-based catalysts, providing atomistic details that can be leveraged in the development of a fully selective system.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleExploring the Parameters Controlling Product Selectivity in Electrochemical CO<inf>2</inf> Reduction in Competition with Hydrogen Evolution Employing Manganese Bipyridine Complexes
dc.title.alternativeENEngelskEnglishExploring the Parameters Controlling Product Selectivity in Electrochemical CO<inf>2</inf> Reduction in Competition with Hydrogen Evolution Employing Manganese Bipyridine Complexes
dc.typeJournal article
dc.creator.authorHong, Wanwan
dc.creator.authorLuthra, Mahika
dc.creator.authorJakobsen, Joakim B.
dc.creator.authorMadsen, Monica R.
dc.creator.authorCastro, Abril C
dc.creator.authorHammershøj, Hans Christian D.
dc.creator.authorPedersen, Steen U.
dc.creator.authorBalcells Badia, David
dc.creator.authorSkrydstrup, Troels
dc.creator.authorDaasbjerg, Kim
dc.creator.authorNova, Ainara
cristin.unitcode185,15,12,70
cristin.unitnameHylleraas-senteret
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2132110
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS Catalysis&rft.volume=&rft.spage=3109&rft.date=2023
dc.identifier.jtitleACS Catalysis
dc.identifier.volume13
dc.identifier.issue5
dc.identifier.startpage3109
dc.identifier.endpage3119
dc.identifier.doihttps://doi.org/10.1021/acscatal.2c05951
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2155-5435
dc.type.versionPublishedVersion
dc.relation.projectNR/NN4654K
dc.relation.projectNFR/262695
dc.relation.projectNFR/325231
dc.relation.projectNFR/325003
dc.relation.projectNFR/314321


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International