Hide metadata

dc.date.accessioned2024-03-01T18:19:55Z
dc.date.available2024-03-01T18:19:55Z
dc.date.created2023-06-27T14:57:19Z
dc.date.issued2023
dc.identifier.citationWeerdesteijn, Maaike Francine Maria Naliboff, John B. Conrad, Clinton Phillips Reusen, Jesse M. Steffen, Rebekka Heister, Timo Zhang, Jiaqi . Modeling Viscoelastic Solid Earth Deformation Due To Ice Age and Contemporary Glacial Mass Changes in ASPECT. Geochemistry Geophysics Geosystems. 2023, 24(3)
dc.identifier.urihttp://hdl.handle.net/10852/108878
dc.description.abstractAbstract The redistribution of past and present ice and ocean loading on Earth's surface causes solid Earth deformation and geoid changes, known as glacial isostatic adjustment. The deformation is controlled by elastic and viscous material parameters, which are inhomogeneous in the Earth. We present a new viscoelastic solid Earth deformation model in ASPECT (Advanced Solver for Problems in Earth's ConvecTion): a modern, massively parallel, open‐source finite element code originally designed to simulate convection in the Earth's mantle. We show the performance of solid Earth deformation in ASPECT and compare solutions to TABOO, a semianalytical code, and Abaqus, a commercial finite element code. The maximum deformation and deformation rates using ASPECT agree within 2.6% for the average percentage difference with TABOO and Abaqus on glacial cycle (∼100 kyr) and contemporary ice melt (∼100 years) timescales. This gives confidence in the performance of our new solid Earth deformation model. We also demonstrate the computational efficiency of using adaptively refined meshes, which is a great advantage for solid Earth deformation modeling. Furthermore, we demonstrate the model performance in the presence of lateral viscosity variations in the upper mantle and report on parallel scalability of the code. This benchmarked code can now be used to investigate regional solid Earth deformation rates from ice age and contemporary ice melt. This is especially interesting for low‐viscosity regions in the upper mantle beneath Antarctica and Greenland, where it is not fully understood how ice age and contemporary ice melting contribute to geodetic measurements of solid Earth deformation.
dc.languageEN
dc.publisherThe Geochemical Society
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleModeling Viscoelastic Solid Earth Deformation Due To Ice Age and Contemporary Glacial Mass Changes in ASPECT
dc.title.alternativeENEngelskEnglishModeling Viscoelastic Solid Earth Deformation Due To Ice Age and Contemporary Glacial Mass Changes in ASPECT
dc.typeJournal article
dc.creator.authorWeerdesteijn, Maaike Francine Maria
dc.creator.authorNaliboff, John B.
dc.creator.authorConrad, Clinton Phillips
dc.creator.authorReusen, Jesse M.
dc.creator.authorSteffen, Rebekka
dc.creator.authorHeister, Timo
dc.creator.authorZhang, Jiaqi
cristin.unitcode185,15,22,40
cristin.unitnameSenter for Jordens utvikling og dynamikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2158792
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Geochemistry Geophysics Geosystems&rft.volume=24&rft.spage=&rft.date=2023
dc.identifier.jtitleGeochemistry Geophysics Geosystems
dc.identifier.volume24
dc.identifier.issue3
dc.identifier.pagecount23
dc.identifier.doihttps://doi.org/10.1029/2022GC010813
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1525-2027
dc.type.versionPublishedVersion
cristin.articleide2022GC010
dc.relation.projectNFR/288449
dc.relation.projectNFR/223272
dc.relation.projectNFR/332523


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International