Hide metadata

dc.date.accessioned2024-02-19T16:14:51Z
dc.date.created2023-02-25T18:20:36Z
dc.date.issued2023
dc.identifier.citationJulia, Maude Putnis, Christine V. King, Helen E. Renard, Francois . Coupled dissolution-precipitation and growth processes on calcite, aragonite, and Carrara marble exposed to cadmium-rich aqueous solutions. Chemical Geology. 2023, 621
dc.identifier.urihttp://hdl.handle.net/10852/108276
dc.description.abstractCalcium carbonate and cadmium-rich fluid interactions have been studied at the nano and microscale with fluid flow and static fluid conditions for three forms of CaCO3: calcite in single crystals of Iceland Spar, calcite in a polycrystalline Carrara marble, and aragonite single crystals. Atomic Force Microscopy (AFM) showed the nanoscale effect of cadmium on CaCO3 dissolution and growth under flow-through conditions at ambient temperature, with the modification of calcite dissolution behaviour and simultaneous precipitation of a Cd-rich phase on all the different samples. Hydrothermal experiments at 200 °C revealed that the reactivity of single calcite crystals is passivated by epitaxial growth of the less soluble Cd-rich endmember of the (Ca,Cd)CO3 solid-solution on the sample surface due to the similar crystallographic structures of calcite and otavite (CdCO3). Conversely, the presence of grain boundaries in Carrara marble or the change of crystallographic structure and reaction-induced fracturing in aragonite allowed, to some extent, the pseudomorphic replacement of Carrara marble and aragonite samples by a porous (Ca,Cd)CO3 solid-solution phase of variable composition. These phenomena have been observed in solutions undersaturated with respect to all solid phases and are the result of an interface-coupled dissolution-precipitation mechanism where the dissolving CaCO3 provides ions to supersaturate the mineral-fluid interfacial layer, leading to the precipitation of a Cd-containing phase on the samples' surfaces. This coupled dissolution-precipitation mechanism could potentially be used as a remediation process to sequester cadmium from contaminated effluents.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleCoupled dissolution-precipitation and growth processes on calcite, aragonite, and Carrara marble exposed to cadmium-rich aqueous solutions
dc.title.alternativeENEngelskEnglishCoupled dissolution-precipitation and growth processes on calcite, aragonite, and Carrara marble exposed to cadmium-rich aqueous solutions
dc.typeJournal article
dc.creator.authorJulia, Maude
dc.creator.authorPutnis, Christine V.
dc.creator.authorKing, Helen E.
dc.creator.authorRenard, Francois
dc.date.embargoenddate2025-02-03
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin2129258
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemical Geology&rft.volume=621&rft.spage=&rft.date=2023
dc.identifier.jtitleChemical Geology
dc.identifier.volume621
dc.identifier.pagecount14
dc.identifier.doihttps://doi.org/10.1016/j.chemgeo.2023.121364
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0009-2541
dc.type.versionAcceptedVersion
cristin.articleid121364


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International