Hide metadata

dc.date.accessioned2024-02-18T17:44:33Z
dc.date.available2024-02-18T17:44:33Z
dc.date.created2023-03-28T15:19:54Z
dc.date.issued2023
dc.identifier.citationTelle, Åshild Trotter, James David Cai, Xing Finsberg, Henrik Nicolay Topnes Kuchta, Miroslav Sundnes, Joakim Wall, Samuel Thomas . A cell-based framework for modeling cardiac mechanics. Biomechanics and Modeling in Mechanobiology. 2023, 22, 515-539
dc.identifier.urihttp://hdl.handle.net/10852/108239
dc.description.abstractAbstract Cardiomyocytes are the functional building blocks of the heart—yet most models developed to simulate cardiac mechanics do not represent the individual cells and their surrounding matrix. Instead, they work on a homogenized tissue level, assuming that cellular and subcellular structures and processes scale uniformly. Here we present a mathematical and numerical framework for exploring tissue-level cardiac mechanics on a microscale given an explicit three-dimensional geometrical representation of cells embedded in a matrix. We defined a mathematical model over such a geometry and parametrized our model using publicly available data from tissue stretching and shearing experiments. We then used the model to explore mechanical differences between the extracellular and the intracellular space. Through sensitivity analysis, we found the stiffness in the extracellular matrix to be most important for the intracellular stress values under contraction. Strain and stress values were observed to follow a normal-tangential pattern concentrated along the membrane, with substantial spatial variations both under contraction and stretching. We also examined how it scales to larger size simulations, considering multicellular domains. Our work extends existing continuum models, providing a new geometrical-based framework for exploring complex cell–cell and cell–matrix interactions.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA cell-based framework for modeling cardiac mechanics
dc.title.alternativeENEngelskEnglishA cell-based framework for modeling cardiac mechanics
dc.typeJournal article
dc.creator.authorTelle, Åshild
dc.creator.authorTrotter, James David
dc.creator.authorCai, Xing
dc.creator.authorFinsberg, Henrik Nicolay Topnes
dc.creator.authorKuchta, Miroslav
dc.creator.authorSundnes, Joakim
dc.creator.authorWall, Samuel Thomas
cristin.unitcode185,15,5,43
cristin.unitnameVitenskapelige beregninger og maskinlæring
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2137672
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biomechanics and Modeling in Mechanobiology&rft.volume=22&rft.spage=515&rft.date=2023
dc.identifier.jtitleBiomechanics and Modeling in Mechanobiology
dc.identifier.volume22
dc.identifier.issue2
dc.identifier.startpage515
dc.identifier.endpage539
dc.identifier.doihttps://doi.org/10.1007/s10237-022-01660-8
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1617-7959
dc.type.versionPublishedVersion
dc.relation.projectNFR/270053
dc.relation.projectSIGMA2/NN2849K


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International