Hide metadata

dc.date.accessioned2023-11-17T16:36:18Z
dc.date.available2023-11-17T16:36:18Z
dc.date.created2023-11-07T14:23:27Z
dc.date.issued2023
dc.identifier.citationOmang, Marianne Gjestvold Hauge, K.O. Trulsen, Jan Karsten . Combustion models for shock-induced cloud ignition of aluminium particles using smoothed particle hydrodynamics. Shock Waves. 2023
dc.identifier.urihttp://hdl.handle.net/10852/105922
dc.description.abstractAbstract The present work is a numerical follow-up on our published experimental paper on shock ignition of aluminium particle clouds in the low-temperature regime. The in-house multi-phase regularized smoothed particle hydrodynamics (MP-RSPH) code is used to perform numerical simulations with an increasing degree of complexity, looking at single-phase, inert, and reactive particles in separate simulations. The first part of the paper gives a short description of the additional physics added to the code. Based on the experimental results, the numerical code is then used to estimate the particle temperature at the time of ignition. Results from simulations with three different numerical descriptions, the diffusive, kinetic, and total burn rates, are then compared to the experimental results. The two diffusive burn rate simulations (K &H and O &H) show the best fit to the experimental results. The burn rate formula based on our experimental data (O &H) is preferred, since it has the gas temperature dependency included and does not require additional parameter adjustments. The results from the numerical simulations support the theory that the observed aluminium particle cloud burning process is diffusive, as indicated in the experimental paper.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCombustion models for shock-induced cloud ignition of aluminium particles using smoothed particle hydrodynamics
dc.title.alternativeENEngelskEnglishCombustion models for shock-induced cloud ignition of aluminium particles using smoothed particle hydrodynamics
dc.typeJournal article
dc.creator.authorOmang, Marianne Gjestvold
dc.creator.authorHauge, K.O.
dc.creator.authorTrulsen, Jan Karsten
cristin.unitcode185,15,3,40
cristin.unitnameRosseland senter for solfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2193363
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Shock Waves&rft.volume=&rft.spage=&rft.date=2023
dc.identifier.jtitleShock Waves
dc.identifier.pagecount12
dc.identifier.doihttps://doi.org/10.1007/s00193-023-01148-z
dc.subject.nviVDP::Rom- og plasmafysikk: 437
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0938-1287
dc.type.versionPublishedVersion
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International