Hide metadata

dc.date.accessioned2023-11-09T16:23:17Z
dc.date.available2023-11-09T16:23:17Z
dc.date.created2023-10-10T11:37:19Z
dc.date.issued2023
dc.identifier.citationAzarov, Alexander García Fernández, Javier Zhao, Junlei Djurabekova, Flyura He, Huan He, Ru Prytz, Øystein Vines, Lasse Bektas, Umutcan Chekhonin, Paul Klingner, Nico Hlawacek, Gregor Kuznetsov, Andrej . Universal radiation tolerant semiconductor. Nature Communications. 2023, 14(1)
dc.identifier.urihttp://hdl.handle.net/10852/105749
dc.description.abstractAbstract Radiation tolerance is determined as the ability of crystalline materials to withstand the accumulation of the radiation induced disorder. Nevertheless, for sufficiently high fluences, in all by far known semiconductors it ends up with either very high disorder levels or amorphization. Here we show that gamma/beta (γ/β) double polymorph Ga 2 O 3 structures exhibit remarkably high radiation tolerance. Specifically, for room temperature experiments, they tolerate a disorder equivalent to hundreds of displacements per atom, without severe degradations of crystallinity; in comparison with, e.g., Si amorphizable already with the lattice atoms displaced just once. We explain this behavior by an interesting combination of the Ga- and O- sublattice properties in γ-Ga 2 O 3 . In particular, O-sublattice exhibits a strong recrystallization trend to recover the face-centered-cubic stacking despite the stronger displacement of O atoms compared to Ga during the active periods of cascades. Notably, we also explained the origin of the β-to-γ Ga 2 O 3 transformation, as a function of the increased disorder in β-Ga 2 O 3 and studied the phenomena as a function of the chemical nature of the implanted atoms. As a result, we conclude that γ/β double polymorph Ga 2 O 3 structures, in terms of their radiation tolerance properties, benchmark a class of universal radiation tolerant semiconductors.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleUniversal radiation tolerant semiconductor
dc.title.alternativeENEngelskEnglishUniversal radiation tolerant semiconductor
dc.typeJournal article
dc.creator.authorAzarov, Alexander
dc.creator.authorGarcía Fernández, Javier
dc.creator.authorZhao, Junlei
dc.creator.authorDjurabekova, Flyura
dc.creator.authorHe, Huan
dc.creator.authorHe, Ru
dc.creator.authorPrytz, Øystein
dc.creator.authorVines, Lasse
dc.creator.authorBektas, Umutcan
dc.creator.authorChekhonin, Paul
dc.creator.authorKlingner, Nico
dc.creator.authorHlawacek, Gregor
dc.creator.authorKuznetsov, Andrej
cristin.unitcode185,15,17,20
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2183281
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature Communications&rft.volume=14&rft.spage=&rft.date=2023
dc.identifier.jtitleNature Communications
dc.identifier.volume14
dc.identifier.issue1
dc.identifier.pagecount0
dc.identifier.doihttps://doi.org/10.1038/s41467-023-40588-0
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2041-1723
dc.type.versionPublishedVersion
cristin.articleid4855
dc.relation.projectNFR/337627
dc.relation.projectNFR/295864
dc.relation.projectNFR/197405
dc.relation.projectNFR/322382


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International