Hide metadata

dc.date.accessioned2023-09-15T16:33:38Z
dc.date.available2023-09-15T16:33:38Z
dc.date.created2023-09-01T10:57:36Z
dc.date.issued2023
dc.identifier.citationKeihänen, Elina Suur-Uski, A.-S. Andersen, Kristian Joten Aurvik, Ragnhild Banerji, Ranajoy Basyrov, Artem Bersanelli, M. Bertocco, S. Brilenkov, Maksym Carbone, M. Colombo, L.P.L. Eriksen, Hans Kristian Kamfjord Eskilt, Johannes Røsok Foss, Marie Kristine Franceschet, C. Fuskeland, Unni Galeotta, S. Galloway, Mathew Gerakakis, S. Gjerløw, Eirik Hensley, B. Herman, Daniel Christopher Iacobellis, M. Ieronymaki, M. Ihle, Håvard Tveit Jewell, J.B. Karakci, Ata Keskitalo, R. Maggio, G. Maino, D. Maris, M. Mennella, A. Paradiso, S. Partridge, B. Reinecke, M. San, Metin Svalheim, Trygve Leithe Tavagnacco, D. Thommesen, Harald Watts, Duncan Wehus, Ingunn Kathrine Zacchei, A. . BeyondPlanck: II. CMB mapmaking through Gibbs sampling. Astronomy and Astrophysics (A & A). 2023, 675
dc.identifier.urihttp://hdl.handle.net/10852/105048
dc.description.abstractWe present a Gibbs sampling solution to the mapmaking problem for cosmic microwave background (CMB) measurements that builds on existing destriping methodology. Gibbs sampling breaks the computationally heavy destriping problem into two separate steps: noise filtering and map binning. Considered as two separate steps, both are computationally much cheaper than solving the combined problem. This provides a huge performance benefit as compared to traditional methods and it allows us, for the first time, to bring the destriping baseline length to a single sample. Here, we applied the Gibbs procedure to simulated Planck 30 GHz data. We find that gaps in the time-ordered data are handled efficiently by filling them in with simulated noise as part of the Gibbs process. The Gibbs procedure yields a chain of map samples, from which we are able to compute the posterior mean as a best-estimate map. The variation in the chain provides information on the correlated residual noise, without the need to construct a full noise covariance matrix. However, if only a single maximum-likelihood frequency map estimate is required, we find that traditional conjugate gradient solvers converge much faster than a Gibbs sampler in terms of the total number of iterations. The conceptual advantages of the Gibbs sampling approach lies in statistically well-defined error propagation and systematic error correction. This methodology thus forms the conceptual basis for the mapmaking algorithm employed in the B EYOND P LANCK framework, which implements the first end-to-end Bayesian analysis pipeline for CMB observations.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleBeyondPlanck: II. CMB mapmaking through Gibbs sampling
dc.title.alternativeENEngelskEnglishBeyondPlanck: II. CMB mapmaking through Gibbs sampling
dc.typeJournal article
dc.creator.authorKeihänen, Elina
dc.creator.authorSuur-Uski, A.-S.
dc.creator.authorAndersen, Kristian Joten
dc.creator.authorAurvik, Ragnhild
dc.creator.authorBanerji, Ranajoy
dc.creator.authorBasyrov, Artem
dc.creator.authorBersanelli, M.
dc.creator.authorBertocco, S.
dc.creator.authorBrilenkov, Maksym
dc.creator.authorCarbone, M.
dc.creator.authorColombo, L.P.L.
dc.creator.authorEriksen, Hans Kristian Kamfjord
dc.creator.authorEskilt, Johannes Røsok
dc.creator.authorFoss, Marie Kristine
dc.creator.authorFranceschet, C.
dc.creator.authorFuskeland, Unni
dc.creator.authorGaleotta, S.
dc.creator.authorGalloway, Mathew
dc.creator.authorGerakakis, S.
dc.creator.authorGjerløw, Eirik
dc.creator.authorHensley, B.
dc.creator.authorHerman, Daniel Christopher
dc.creator.authorIacobellis, M.
dc.creator.authorIeronymaki, M.
dc.creator.authorIhle, Håvard Tveit
dc.creator.authorJewell, J.B.
dc.creator.authorKarakci, Ata
dc.creator.authorKeskitalo, R.
dc.creator.authorMaggio, G.
dc.creator.authorMaino, D.
dc.creator.authorMaris, M.
dc.creator.authorMennella, A.
dc.creator.authorParadiso, S.
dc.creator.authorPartridge, B.
dc.creator.authorReinecke, M.
dc.creator.authorSan, Metin
dc.creator.authorSvalheim, Trygve Leithe
dc.creator.authorTavagnacco, D.
dc.creator.authorThommesen, Harald
dc.creator.authorWatts, Duncan
dc.creator.authorWehus, Ingunn Kathrine
dc.creator.authorZacchei, A.
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2171587
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy and Astrophysics (A & A)&rft.volume=675&rft.spage=&rft.date=2023
dc.identifier.jtitleAstronomy and Astrophysics (A & A)
dc.identifier.volume675
dc.identifier.pagecount11
dc.identifier.doihttps://doi.org/10.1051/0004-6361/202142799
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-6361
dc.type.versionPublishedVersion
cristin.articleidA2


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International