Hide metadata

dc.date.accessioned2023-03-22T14:01:44Z
dc.date.available2023-03-22T14:01:44Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/10852/101718
dc.description.abstractMathematical models are routinely used to represent complex phenomena both in science and engineering. In combination with powerful computers, the models have provided insight in fields like physics, chemistry and astronomy. Over the past 60 years, this modelling tradition has also been applied to biology and medicine. One particularly active field of research has been to understand the dynamics of excitable cells with emphasis on neurons and cardiac cells. The models have provided new and important insight into how such cells, and collections of such cells, work and interact. The models of neurons and cardiac cells tend to be computationally very demanding and have therefore given rise to numerous challenges in scientific computing. In the present thesis, a new class of models that more accurately represent individual cells is studied. Earlier models have applied homogenization in order to enable analysis of cell tissue. This approach is reasonable when only coarse models can be studied. But as the available computing power continues to grow, it has become increasingly clear that the homogenous models will eventually be replaced by models where every individual cell is represented. However, these models become extremely challenging from a computational point of view. In the thesis, a detailed model representing individual cells is applied to represent both neurons and cardiac cells. Methods of solution are investigated, and the model is used to analyze physiological processes. In particular, the model is applied to study the mechanisms underlying the conduction of electrical signals in cardiac tissue. Furthermore, a new method for investigating the uniqueness of parameters in models of the action potential is derived and analyzed. The final part of the thesis considers a new method for improving the usefulness of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for drug screening applications. The hiPSC-CMs hold great promise for improving present procedures for investigating new drugs’ potentially dangerous side effects for cardiac cells. However, the usefulness of the hiPSC-CMs is limited by the relative immaturity of their physiological properties compared to those of the mature cardiac cells in the adult heart. In the method introduced in the thesis, a computational procedure is applied to identify drug effects from measurements of the membrane potential and intracellular (cytosolic) calcium concentration of hiPSC-CMs. Afterwards, a computational procedure is applied to estimate the corresponding drug effect for the mature cardiac cells in an adult human heart. The measurements of hiPSC-CMs are performed in microphysiological systems, and the data are provided by Departments of Bioengineering, Material Science and Engineering, University of California, Berkeley.en_US
dc.language.isoenen_US
dc.relation.haspartPaper I An Evaluation of the Accuracy of Classical Models for Computing the Membrane Potential and Extracellular Potential for Neurons. Aslak Tveito, Karoline H. Jæger, Glenn T. Lines, Łukasz Paszkowski, Joakim Sundnes, Andrew G. Edwards, Tuomo Mäki-Marttunen, Geir Halnes, and Gaute T. Einevoll. Published in Frontiers in Computational Neuroscience 11:27 (2017). An author version is included in the thesis. The published version is available at: https://doi.org/10.3389/fncom.2017.00027
dc.relation.haspartPaper II A Cell-Based Framework for Numerical Modeling of Electrical Conduction in Cardiac Tissue. Aslak Tveito, Karoline H. Jæger, Miroslav Kuchta, Kent-Andre Mardal, and Marie E. Rognes. Published in Frontiers in Physics 5:48 (2017). An author version is included in the thesis. The published version is available at: https://doi.org/10.3389/fphy.2017.00048
dc.relation.haspartPaper III Properties of Cardiac Conduction in a Cell-Based Computational Model. Karoline H. Jæger, Andrew G. Edwards, Andrew D. McCulloch, and Aslak Tveito. Published in PLoS Computational Biolology 15(5):e1007042 (2019). An author version is included in the thesis. The published version is available at: https://doi.org/10.1371/journal.pcbi.1007042
dc.relation.haspartPaper IV Inversion and Computational Maturation of Drug Response Using Human Stem Cell Derived Cardiomyocytes in Microphysiological Systems. Aslak Tveito, Karoline H. Jæger, Nathaniel Huebsch, Bérénice Charrez, Andrew G. Edwards, Samuel Wall, and Kevin E. Healy. Published in Scientific Reports 8:17626 (2018). An author version is included in the thesis. The published version is available at: https://doi.org/10.1038/s41598-018-35858-7
dc.relation.haspartPaper V Improved Computational Identification of Drug Response Using Optical Measurements of Human Stem Cell Derived Cardiomyocytes in Microphysiological Systems. Karoline H. Jæger, Verena Charwat, Bérénice Charrez, Henrik Finsberg, Samuel Wall, Kevin E. Healy, and Aslak Tveito. Published in Frontiers in Pharmacology 10:1648 (2020). An author version is included in the thesis. The published version is available at: https://doi.org/10.3389/fphar.2019.01648
dc.relation.haspartPaper VI Detecting Undetectables: Can Conductances of Action Potential Models be Changed Without Appreciable Change in the Transmembrane Potential? Karoline H. Jæger, Samuel Wall, and Aslak Tveito. Published in Chaos 29(7):073102 (2019). An author version is included in the thesis. The published version is available at: https://doi.org/10.1063/1.5087629
dc.relation.urihttps://doi.org/10.3389/fncom.2017.00027
dc.relation.urihttps://doi.org/10.3389/fphy.2017.00048
dc.relation.urihttps://doi.org/10.1371/journal.pcbi.1007042
dc.relation.urihttps://doi.org/10.1038/s41598-018-35858-7
dc.relation.urihttps://doi.org/10.3389/fphar.2019.01648
dc.relation.urihttps://doi.org/10.1063/1.5087629
dc.titleCell-Based Mathematical Models of Small Collections of Excitable Cellsen_US
dc.typeDoctoral thesisen_US
dc.creator.authorJæger, Karoline Horgmo
dc.type.documentDoktoravhandlingen_US


Files in this item

Appears in the following Collection

Hide metadata