Hide metadata

dc.date.accessioned2023-03-13T17:25:07Z
dc.date.available2023-03-13T17:25:07Z
dc.date.created2022-11-28T14:18:00Z
dc.date.issued2022
dc.identifier.citationSpeake, Benjamin T. Irons, Tom JP Wibowo, Meilani Johnson, Andrew G David, Grégoire Teale, Andrew Michael . An Embedded Fragment Method for Molecules in Strong Magnetic Fields. Journal of Chemical Theory and Computation. 2022, 18(12), 7412-7427
dc.identifier.urihttp://hdl.handle.net/10852/101382
dc.description.abstractAn extension of the embedded fragment method for calculations on molecular clusters is presented, which includes strong external magnetic fields. The approach is flexible, allowing for calculations at the Hartree–Fock, current-density-functional theory, Møller–Plesset perturbation theory, and coupled-cluster levels using London atomic orbitals. For systems consisting of discrete molecular subunits, calculations using London atomic orbitals can be performed in a computationally tractable manner for systems beyond the reach of conventional calculations, even those accelerated by resolution-of-the-identity or Cholesky decomposition methods. To assess the applicability of the approach, applications to water clusters are presented, showing how strong magnetic fields enhance binding within the clusters. However, our calculations suggest that, contrary to previous suggestions in the literature, this enhanced binding may not be directly attributable to strengthening of hydrogen bonding. Instead, these results suggest that this arises for larger field strengths as a response of the system to the presence of the external field, which induces a charge density build up between the monomer units. The approach is embarrassingly parallel and its computational tractability is demonstrated for clusters of up to 103 water molecules in triple-ζ basis sets, which would correspond to conventional calculations with more than 12 000 basis functions.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAn Embedded Fragment Method for Molecules in Strong Magnetic Fields
dc.title.alternativeENEngelskEnglishAn Embedded Fragment Method for Molecules in Strong Magnetic Fields
dc.typeJournal article
dc.creator.authorSpeake, Benjamin T.
dc.creator.authorIrons, Tom JP
dc.creator.authorWibowo, Meilani
dc.creator.authorJohnson, Andrew G
dc.creator.authorDavid, Grégoire
dc.creator.authorTeale, Andrew Michael
cristin.unitcode185,15,12,70
cristin.unitnameHylleraas-senteret
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2082811
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Chemical Theory and Computation&rft.volume=18&rft.spage=7412&rft.date=2022
dc.identifier.jtitleJournal of Chemical Theory and Computation
dc.identifier.volume18
dc.identifier.issue12
dc.identifier.startpage7412
dc.identifier.endpage7427
dc.identifier.doihttps://doi.org/10.1021/acs.jctc.2c00865
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1549-9618
dc.type.versionPublishedVersion
dc.relation.projectNFR/262695
dc.relation.projectEC/H2020/772259


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International