Hide metadata

dc.date.accessioned2023-03-03T18:24:44Z
dc.date.available2023-03-03T18:24:44Z
dc.date.created2022-11-28T13:59:38Z
dc.date.issued2022
dc.identifier.citationFawzi, Omar Müller-Hermes, Alexander Shayeghi, Ala . A Lower Bound on the Space Overhead of Fault-Tolerant Quantum Computation. 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). 2022, 1-20. Tyskland: Schloss Dagstuhl, Leibniz-Zentrum für Informatik
dc.identifier.urihttp://hdl.handle.net/10852/100674
dc.description.abstractThe threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation stating that arbitrarily long quantum computations can be performed with a polylogarithmic overhead provided the noise level is below a constant level. A recent work by Fawzi, Grospellier and Leverrier (FOCS 2018) building on a result by Gottesman (QIC 2013) has shown that the space overhead can be asymptotically reduced to a constant independent of the circuit provided we only consider circuits with a length bounded by a polynomial in the width. In this work, using a minimal model for quantum fault tolerance, we establish a general lower bound on the space overhead required to achieve fault tolerance. For any non-unitary qubit channel N and any quantum fault tolerance schemes against i.i.d. noise modeled by N, we prove a lower bound of max {Q(N)−1n, αN log T} on the number of physical qubits, for circuits of length T and width n. Here, Q(N) denotes the quantum capacity of N and αN > 0 is a constant only depending on the channel N. In our model, we allow for qubits to be replaced by fresh ones during the execution of the circuit and in the case of unital noise, we allow classical computation to be free and perfect. This improves upon results that assumed classical computations to be also affected by noise, and that sometimes did not allow for fresh qubits to be added. Along the way, we prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude damping noise resolving a conjecture by Ben-Or, Gottesman and Hassidim (2013).
dc.languageEN
dc.publisherSchloss Dagstuhl, Leibniz-Zentrum für Informatik
dc.relation.ispartofLeibniz International Proceedings in Informatics
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA Lower Bound on the Space Overhead of Fault-Tolerant Quantum Computation
dc.title.alternativeENEngelskEnglishA Lower Bound on the Space Overhead of Fault-Tolerant Quantum Computation
dc.typeChapter
dc.creator.authorFawzi, Omar
dc.creator.authorMüller-Hermes, Alexander
dc.creator.authorShayeghi, Ala
cristin.unitcode185,15,13,65
cristin.unitnameFlere komplekse variable, logikk og operatoralgebraer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextoriginal
dc.identifier.cristin2082766
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.btitle=13th Innovations in Theoretical Computer Science Conference (ITCS 2022)&rft.spage=1&rft.date=2022
dc.identifier.startpage1
dc.identifier.endpage20
dc.identifier.pagecount2400
dc.identifier.doihttps://doi.org/10.4230/LIPIcs.ITCS.2022.0
dc.type.documentBokkapittel
dc.type.peerreviewedPeer reviewed
dc.source.isbn978-3-95977-217-4
dc.type.versionPublishedVersion
cristin.btitle13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International