
1.  Introduction
Long-term planning and management of water resources, multisector water demand and supply as well as related 
infrastructures are closely associated with the capability and reliability of characterizing variations in precipita-
tion (Sun et al., 2018). The first task is to characterize the statistics of precipitation data by using the long-term 
reliable observed precipitation series. To implement statistical analysis, a stationarity assumption is usually made 
for relevant time series. According to Salas (1993), “A time series is stationary when it is free of change points, 
trends or periodicities.” However, the stationarity assumption has been challenged by observations and modeling 
results recently (Lee & Ouarda, 2010; Li et al., 2015; Montanari & Koutsoyiannis, 2014; Russo et al., 2013; 
Sang et al., 2016; Torres-Batlló & Martí-Cardona, 2020). There is an increasing research interest in the detection 
and attribution analysis of the nonstationarity in hydro-climatic time series (e.g., Liu et al., 2020; Papalexiou & 
Montanari, 2019).

For Norway and even the whole of Europe, abrupt changes, trend and periodicity characteristics in climatic and 
hydrological time series have been widely discussed in the past (Dyrrdal et al., 2012, 2015; Førland & Kristoffers-
en, 1989; Vicente-Serrano & López-Moreno, 2008; Zveryaev, 2006). Ingebrigtsen et al. (2014, 2015) adopted a 
spatial approach for modeling the nonstationarity of the regional annual precipitation time series in southern Nor-
way. Blanchet et al. (2015) detected an increasing trend of extreme precipitation in the southwestern part of Nor-
way by using the output of a probabilistic rainfall estimation model. Dyrrdal et al. (2016) investigated the spatial 
variability of extreme precipitation and estimated the variation in the shape parameter of the generalized extreme 
value distribution of extreme areal precipitation in Norway by using a gridded data set. Cieszyńska and Strams-
ka (2018) revealed the statistically significant trends of annual air temperature and a noticeable spatial variability 
of the meteorological conditions in the Porsanger fjord of Norway. Dyrrdal et al. (2018) evaluated the trend of 
subdaily and daily summer precipitation in Norway based on gridded datasets and found that summer extreme 
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precipitation displays significant spatial variability in association with the complex topography and low-pressure 
systems in the North Atlantic. Skogseth et al.  (2020) evaluated the trends in the Isfjorden fjord's climate and 
circulation and attributed the cause of the shift of Atlantic water to positive trends in mean air temperature and 
mean sea surface temperature of the European Arctic by combining observational and reanalysis datasets. Trend 
analysis, the most frequently used approach, can adequately extract the strong or dominant global trends from 
time series. The comprehensive analysis of abrupt change, trend and periodicity would facilitate the description 
of the variability in global and local processes, especially concerning some local variable characteristics hidden 
in the strong or dominant global trends of the time series. Although extra efforts are required to comprehensively 
detect each possible variability, additional information acquired is highly useful to improve the understanding of 
global and local variable characteristics and how these three characteristics interact with each other. Therefore, 
it would be interesting and important to conduct the comprehensive research from the perspectives of abrupt 
change, trend, and periodicity analysis for improving the understanding of precipitation variability detection.

Furthermore, the attribution analysis of nonstationarity in hydro-meteorological time series has become increas-
ingly important (Guo et al., 2020; Lee et al., 2019; Pei, et al., 2018; Sarojini, et al., 2016). Understanding precip-
itation variability as well as its association with teleconnections is beneficial for a better adaptation to varying 
climatic conditions and a reduction in the damage related to climate change. The annual and interannual-to-dec-
adal teleconnections (or oscillations) are often regarded as two of the most notable patterns and explanatory 
variables of climatic and hydrological variability (e.g., Hua et al., 2019; Lee et al., 2018; Li et al., 2018; Murgulet 
et al., 2017; Yin & Zhou, 2018). Valdés-Pineda et al. (2018) adopted Singular Spectrum Analysis techniques to 
analyze the combined influence of two teleconnections on the variability of monthly precipitation in Chile. Mayta 
et al. (2019) combined the principal component analysis and the empirical orthogonal function for quantifying 
the impact of Madden-Julian oscillation on intraseasonal precipitation variability in the Amazon catchment. 
Furthermore, Börgel et al. (2020) argued that both Atlantic Multidecadal and North Atlantic oscillations have a 
prominent influence on the North European climate variability, which partially confirms the results obtained by 
Asong et al. (2018) and Nalley et al. (2019). Besides, plenty of studies have made contributions to attribution 
analysis of hydro-meteorological variability. Most of these researches have centered on modeling the linear re-
lationship between trend characteristics and oscillations. Hence, a better exploration of the complex relationship 
between teleconnections and precipitation is required to feature precipitation variability.

From the perspective of Norwegian climatic variability detection, previous researches primarily concentrated on 
global trend analysis. From the perspective of the physical-cause analysis of climatic variability, many fundamen-
tal challenges still exist in variability attribution analysis, whereas little attention was paid to the capture of the 
complex nonlinear relationships between teleconnections and precipitation.

The purpose of this study is twofold. First, we detect the variability of long-term annual precipitation series in 
Norway by applying a comprehensive variability detection approach. Second, we associate annual and interan-
nual-to-decadal teleconnection indices with annual precipitation series by introducing the Maximal Information 
Coefficient (MIC) to explain such climatic variability.

The rest of this manuscript is structured as follows. We describe the study area and materials in Section 2 and the 
methods adopted in Section 3. The methods adopted to perform the detection and attribution analysis of annual 
precipitation variability and the discussion of results are presented in Section 4. The main findings and conclu-
sions are summarized in Section 5.

2.  Study Area and Materials
2.1.  Study Area

Norway (Figure 1) is located in the western part of the Northern Europe and has a total administrative area of 
385,251 km2 (our study area occupying 324,220 km2 covers the mainland Norway, excluding the Svalbard and 
Jan Mayen). Due to a large span of latitude and varied topography, the meteorological conditions in the country 
display a high spatial variability. The average annual precipitation varies from around 600 mm in northeastern 
and central-eastern areas to over 3,000 mm in the southwestern area. The precipitation volume is commonly in-
fluenced by various Northern Hemisphere atmospheric processes and reaches peaks during autumn and winter, 
except the eastern Norway which exhibits cold-dry winter and the maximal precipitation volumes often occur in 
summer (Yan et al., 2019). Extreme precipitation and flooding have large social costs in Norway, hence, accurate 
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implementation of detection and attribution analysis on precipitation series 
would allow for a better adaptation to varying climatic conditions and a re-
duction in the damage caused by climate change.

2.2.  Materials

In Norway, three types of surface rain gauges are employed to measure pre-
cipitation. Regular monitoring stations measure precipitation by a simple 
manually operated bucket, and the total precipitation volume is often record-
ed once a day. Automated monitoring stations hold either weight pluviometer 
or tipping bucket facilities. More details on precipitation measurements and 
data quality control can be found in the data policy released by the Meteoro-
logical Institute (MET) of Norway (https://www.met.no/).

The Norwegian meteorological network that monitors daily precipitation 
contains more than 550 stations in 2019, about 200 of which also gauge 
hourly rainfall. Significant variation in the number of monitoring stations 
appeared over the years, leading to rare long-term precipitation observations 
for a common study period. Because most of the gauges have been installed 
at lower elevations in southwestern Norway, the spatial distribution of the 
gauges is slightly inhomogeneous. Consequently, data of 159 rainfall stations 
are used to detect and attribute the variability of long-term annual precipi-
tation series owing to the following reasons: (a) The length of the precipita-
tion data set at each station is larger than 30 years while the continuous data 
length varies from 31 to 70 years (1950–2019); (b) the stations are evenly 
distributed in five regions of Norway (Hegdahl et al., 2019). A total of 22 
out of 159 stations have samples close to 70 and 91 out of 159 stations have 
samples close to 50. The location of Norway and 159 precipitation monitor-
ing stations is illustrated in Figure 1. The numbers of precipitation stations 
in five regions are: 49 (East), 11 (South), 24 (West), 22 (Middle), and 53 
(North), respectively.

Teleconnections refer to the associations of atmospheric and oceanic climate 
system anomalies that occur over long distances. Several Northern Hemi-

sphere teleconnection patterns have been considered in this study to identify their associations with nonstation-
ary annual precipitation series over Norway mainland, including (annual oscillations) the Scandinavian pattern 
(SCAND), the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia pattern (EAWR) as well as 
(interannual-to-decadal oscillations) the Atlantic Multidecadal Oscillation (AMO) and the Madden-Julian Oscil-
lation (MJO). These teleconnection patterns have been associated in the literature not only with common meteor-
ological variables such as precipitation and temperature, but also with streamflow, snow cover, or crop production 
(e.g., Delworth & Zeng, 2016; Irannezhad et al., 2020; Mahajan et al., 2018; Wu & Hu, 2015).

Precipitation data of 159 gauge stations were extracted from various sources: the Global Summary of the Day 
(GSOD) datasets are accessible on the website of the National Climate Data Center (https://catalog.data.gov/da-
taset/global-surface-summary-of-the-day-gsod); the North Atlantic Oscillation (NAO), the East Atlantic/Western 
Russia pattern (EAWR) and the Atlantic Multidecadal Oscillation (AMO) are accessible on the website of the 
National Oceanic and Atmospheric Administration (https://psl.noaa.gov/data/climateindices/list/); the Scandina-
vian pattern (SCAND) is accessible on the website (https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.
shtml); and the Madden-Julian Oscillation (MJO) is accessible on the website (https://www.cpc.ncep.noaa.gov/
products/precip/CWlink/mjo_iso.html). The annual teleconnection indices have a spatial resolution of 1° × 1° 
from 1950 to 2019.

Figure 1.  Study area and locations of the selected 159 rainfall monitoring 
stations in five regions over the whole Norway mainland.
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3.  Methods
Figure 2 illustrates the analysis flowchart adopted in this study. The analysis consists of the following compo-
nents: the multiple comparison procedures for change point detection (Figure 2a); the Mann-Kendall test for trend 
detection (Figure 2b); the Wavelet Analysis for periodicity detection (Figure 2c); and the Maximal Information 
Coefficient-based attribution analysis (Figure 2d).

3.1.  Nonstationarity Detection

The aim of this section is to identify and test the statistical significance of change points, trends, and periodicities 
in time series. The related detection methods are described as follows.

3.1.1.  Multiple Comparison Procedures for Change Point Detection

Gradual long-term climate change differs from abrupt climate change. More attention has been paid in the liter-
ature and IPCC reports on the gradual climate change over many decades or even longer. Abrupt climate change 
occurs in a matter of years or a few decades and has probably made a greater impact upon both human socie-
ties and natural environments than gradual climate change. For example, severe droughts and extremely high 
temperature events are the most serious abrupt climate change events (Wathen, 2011). The physical reason for 
abrupt discharge change can be attributed to precipitation change, land use change and flow regulation of rivers; 
however, causes of abrupt climate changes are far from clear. The abrupt change in temperature and precipitation 
might have associations with regional atmospheric circulation, and besides, solar variability. Volcanic activities, 
tropospheric aerosols, and increase in concentration of greenhouse gases, among other factors, are also believed 

Figure 2.  Main analytical architectures adopted in this study. (a) Change point detection approach. (b) Mann-Kendall test. (c) Wavelet Analysis. (d) Maximal 
Information Coefficient (MIC)-based attribution analysis.
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to cause changes, though no clear lines of evidence have been developed 
(Chen et al., 2014; Temnerud & Weyhenmeyer, 2008).

In general, the change point detection concentrates on the parameters of loca-
tion (mean or the first moment) and scale (variance or the second moment), 
whereas the shape parameter (the third moment) is assumed to be constant 
with time for achieving model stability and applicability (Cannon,  2010; 
Zhou, 2020). Note that methods that only detect differences in the mean will 
not detect nonstationarities present in other moments. The same argument 
applies to methods for detecting nonstationarity in variance and shape param-
eter. For this reason, this study recruits several methods that assess nonsta-
tionarities in time series datasets driven by changes in the mean and variance, 
as well as in the distributional properties of the data set (Table  1). These 
methods include the Pettitt and Mann-Whitney method for testing changes 
in mean values, the Lombard Mood and Mood methods for detecting chang-
es in variance, and the Anderson Darling, Kolmogorov-Smirnov and Cram-
er-Von-Mises methods for assessing the changes in the underlying distribu-
tion. More details on the Kolmogorov-Smirnov, Cramer-von Mises, Pettitt, 
Mann-Whitney, Lombard Mood and Mood tests can be found in Erdman and 
Emerson  (2007), Ross  (2015), James and Matteson  (2015), and Friedman 
et al. (2016).

3.1.2.  Mann-Kendall Test for Trend Detection

As mentioned earlier, abrupt change and graduate trend change are two different forms of nonstationarity and 
have different causes and physical reasons. But both can exist simultaneously in the observed data series. Abrupt 
change detection is conducted prior to the trend analysis of subdivided series. Subdivided series may or may 
not have trends in mean and variance. That is to say if change-points in mean/variance are detected, the subset 
timeseries may not necessarily be stationary in the mean/variance. These may have different trends that are either 
significant or insignificant (equivalent to no trend). Consequently, a trend test is required to check if there are 
monotonic trends in the subset and entire timeseries.

Mann (1945) formulated the Mann-Kendall test as a nonparametric test for trend detection while Kendall (1975) 
further derived the statistical distribution of the test for identifying nonlinear trends. The test has been widely 
employed to identify trends in hydro-meteorological time series (e.g., Ahmad et al., 2015; Júnior et al., 2020). 
However, the positive or negative autocorrelation in a time series would affect the trend test statistics (Yue & 
Wang, 2002). Hence, the prewhitening-based (Bayazit & Önöz, 2007) Mann-Kendall test was employed to detect 
monotonic trends of annual precipitation series in the subsets or the entire set of the data in this study. The de-
scription of the prewhitening-based Mann-Kendall test is given in Appendix A.

3.1.3.  Wavelet Analysis for Periodicity Detection

Wavelet Analysis is an effective approach to detecting the periodicity of nonstationary time series since it is able 
to provide harmonious localization of the temporal-frequency resolution in comparison to Fourier Transform and 
Semivariance Analysis (El-Borie et al., 2020; Song et al., 2018; Tan et al., 2016). The general form of the Wavelet 
Analysis function is described below.

�(�, �) = �−1∕2 ⋅ �
( � − �

�

)

� (1)

where 𝐴𝐴 𝐴𝐴(𝑎𝑎𝑎 𝑎𝑎) is the wavelet basis function, and a and b are the scale and time shift parameters. The common 
wavelet basis function used in most hydro-meteorological applications is the Morlet wavelet (Baidu et al., 2017; 
Kang & Lin, 2007). The continuous Wavelet Analysis is calculated by the convolution of 𝐴𝐴 𝐴𝐴(𝑡𝑡) time series with the 
wavelet base function 𝐴𝐴 𝐴𝐴(𝑎𝑎𝑎 𝑎𝑎) .

Method

Detected 
year: Enda or 

startb Detection type

Single or 
multiple 

change points

Pettitt Start Mean based Single

Mann-Whitney End Mean based Multiple

Lombard Mood End Variance based Single

Mood End Variance based Multiple

Anderson Darling End Distribution based Single

Kolmogorov-Smirnov End Distribution-based Multiple

Cramer-von Mises End Distribution based Multiple
aEnd refers to the end year of a previous homogeneous subset. bStart refers to 
the start year of a subsequent homogeneous subset.

Table 1 
Three Types of Change Detection Methods Adopted in This Study
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� (�, �) = �−1∕2 ⋅

+∞

∫
−∞

� (�) ⋅ �̄
( � − �

�

)

dt� (2)

where 𝐴𝐴 W(𝑎𝑎𝑎 𝑎𝑎) is the continuous Wavelet Analysis function with parameters a and b. 𝐴𝐴 𝐴𝐴𝐴(⋅) is the complex conjugate 
function, and 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is the continuous series over time t.

Since most hydro-meteorological time series are discrete, the continuous Wavelet Analysis function can be con-
verted to a discrete one by a discrete scale representation.

� ′(�, �) = �−1∕2 ⋅ Δ� ⋅
�
∑

�=1

� (� ⋅ Δ�) ⋅ �̄
(

� ⋅ Δ� − �
�

)

� (3)

where 𝐴𝐴 𝐴𝐴 ′(𝑎𝑎𝑎 𝑎𝑎) is the discrete Wavelet Analysis with parameters a and b. 𝐴𝐴 Δ𝑡𝑡 is the time length of the discrete 
scale, and 𝐴𝐴 𝐴𝐴 and n are the index and numbers of data points, respectively.

To identify the periodicity of a time series, the wavelet variance is calculated by the convolution of the squared 
Wavelet Analysis over the time shift parameter b.

Var (𝑎𝑎) =

+∞

∫
−∞

[𝑊𝑊 ′(𝑎𝑎𝑎 𝑎𝑎)]
2
db� (4)

where 𝐴𝐴 Var (𝑎𝑎) is the wavelet variance. The plot of wavelet variance over the scale parameter (𝐴𝐴 𝐴𝐴 ) reveals the peri-
odicities of a time series over various temporal-frequency resolutions. A periodicity with a large wavelet variance 
value implies it would be the dominant periodic component of a time series.

3.2.  Maximal Information Coefficient (MIC)-Based Attribution Analysis

The MIC is regarded as a powerful method for quantifying the relationship between various variables, which 
measures the correlation coefficient in the range [0, 1] (Reshef et al., 2011). The MIC can capture wide-rang-
ing associations in both linear and nonlinear as well as both functional and nonfunctional aspects (Kinney & 
Atwal, 2014), compared to the correlation coefficients of Pearson, Spearman, Kendall, mutual information and 
correlation of distances (Table 2). Therefore, we calculated the MIC between teleconnection indices and annual 
precipitation series (wavelet coefficients) to perform attribution analysis on the variability (periodicity) in annual 
precipitation series.

The MIC is calculated on the basis of a distribution of two datasets (T, P), where T and P are two random varia-
bles (e.g., T is the teleconnection index and P is annual precipitation series). The application of MIC to attribution 
analysis for nonstationary annual precipitation series is described as follows.

Correlation coefficient Reference Range Cons Pros (Applicability)

Pearson Pearson (1895) [−1, 1] Only for measuring linear correlation Discrete variable with the same time interval or 
continuous variable

Spearman rank Spearman (1904) [−1, 1] Lower accuracy than Product-Moment Ordered variables, not following normal distribution

Kendall rank Kendall (1938) [−1, 1] Requiring the rank sampling method Ordered variables, not following normal distribution

Mutual information Shannon (1948) [0, +∞) Difficult to calculate and without 
normalization

No assumption for marginal distributions

Correlation of distances Székely et al. (2007) [0, 1] Independent correlation with a positive 
value

Good generalizability with calculated Euclidean 
distance

MIC Reshef et al. (2011) [0, 1] High computational complexity Good generalizability with normalization meanwhile 
measuring both linear and nonlinear correlation

Table 2 
Comparison of Common Correlation Coefficients
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Step 1. Partition grids and calculate mutual information of distribution. Given a dataset D with ordered pairs (T, 
P), the x- and y-values of D can be partitioned into x columns and y rows, respectively. A pair of partitions 
refer to an x-by-y grid. For a grid G, we call D|G the distribution that is determined by the points in the 
dataset D on the cells of G. For a finite dataset D, different grids G lead to different distribution D|G. Then, 
the mutual information can be calculated as follows.

I(�|�) = ∫ d�d�� (�, �)log2

(

� (�, �)
� (�)� (�)

)

� (5a)

I∗(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷) = max I(𝐷𝐷|𝐺𝐺)� (5b)

where 𝐴𝐴 𝐴𝐴(𝐷𝐷|𝐺𝐺) is the mutual information of distribution D|G. 𝐴𝐴 𝐴𝐴∗(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷) is the maximal mutual information over 
all grids G with x columns and y rows. 𝐴𝐴 𝐴𝐴 (𝑥𝑥) and 𝐴𝐴 𝐴𝐴 (𝑦𝑦) are the probability distribution functions of x- and y-values 
of D, respectively. 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑥 𝑥𝑥) is the joint probability distribution function of the x- and y-values of D.

Step 2. Compute the characteristic matrix of D in terms of 𝐴𝐴 𝐴𝐴∗(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷) . For achieving stable convergence, this 
study implemented normalization by 𝐴𝐴 log2 min {𝑥𝑥𝑥 𝑥𝑥} for x columns and y rows to produce a score that can 
be compared over all grids with different dimensions and distributions. The infinite characteristic matrix 

𝐴𝐴 𝐴𝐴(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷) of a finite dataset D with x columns and y rows can be computed as follows.

𝑀𝑀(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷) =
𝐼𝐼∗(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷)

log2 min {|𝑥𝑥|, |𝑦𝑦|}
� (6)

where 𝐴𝐴 𝐴𝐴(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷) is the characteristic matrix of a finite data set D with x columns and y rows.

Step 3. Compute MIC in terms of 𝐴𝐴 𝐴𝐴(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷) and grid size 𝐴𝐴 𝐴𝐴(𝑛𝑛) . The function 𝐴𝐴 𝐴𝐴(𝑛𝑛) is the grid size varying with 
the sample size n, where 𝐴𝐴 0 < 𝐵𝐵(𝑛𝑛) ≤ 𝑛𝑛1−𝜀𝜀 (𝐴𝐴 0 < 𝜀𝜀 𝜀 1 ) (Kinney & Atwal, 2014; Reshef et al., 2011). It is 
important to determine a suitable value for 𝐴𝐴 𝐴𝐴(𝑛𝑛) because very large 𝐴𝐴 𝐴𝐴(𝑛𝑛) can cause nonzero scores even for 
random variables while very small 𝐴𝐴 𝐴𝐴(𝑛𝑛) implies the search is conducted only for simple patterns. In this 
study, we adopted 𝐴𝐴 𝐴𝐴(𝑛𝑛) = 𝑛𝑛0.6 , for which the value was determined through a trial-and-error procedure. 
Therefore, the MIC of a finite dataset D with ordered sample pairs (x, y), sample size n and grid size less 
than B(n) is calculated as follows.

MIC(𝐷𝐷) = max
𝑥𝑥𝑥𝑥𝑥B(𝑛𝑛)

{𝑀𝑀(𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷)}� (7)

where 𝐴𝐴 MIC(𝐷𝐷) is the maximal information coefficient of a finite data set D.

Step 4. Check whether the computation process terminates. Switch the grid over axes, repeat the above steps until 
the maximal value of information coefficients is obtained. The MIC value closer to 1 implies high corre-
lation while closer to 0 suggests the variables are probably independent. It is clear that if the two random 
variables are independent, the joint distribution is the product of marginals and MIC tends to zero. Reshef 
et al. (2011) proved that noiseless functional relationships (i.e., Pearson correlation coefficient R = 1.0) 
receive an MIC value of about 1.0 if the two random variables are fully dependent.

4.  Results and Discussion
Aiming at identifying and quantifying the nonstationary characteristics in long term annual precipitation series, 
the results for detecting change points, trend and periodicity as well as for attributing the causes of nonstationary 
characteristics are presented and discussed in Sections 4.1 and 4.2, respectively.

4.1.  Detection of Nonstationarity in Annual Precipitation Series

First, the results of multiple methods at a significance level of 0.05 on the abrupt changes in the distribution, and 
the mean and variance of annual precipitation series shown in Table 3. Several findings are obtained. First, no 
abrupt changes occur in the distribution (Generalized Extreme Value) of annual precipitation series at all stations 
while significant abrupt changes appear in the mean (variance) value of annual precipitation series at 117 (49) 

 23335084, 2022, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021E

A
001857 by U

niversity O
f O

slo, W
iley O

nline L
ibrary on [02/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

ZHOU ET AL.

10.1029/2021EA001857

8 of 20

out of 159 stations in five regions of Norway. Second, the annual precipitation series at most stations in four re-
gions have two single change points apart from those of the southern region, while only 7 stations in the northern 
region have multiple (=2) change points. Third, there is a consensus among multiple comparison procedures in 
detection of changes in mean and variance parameters at a significance level of 0.05. Taking the eastern region 
as an example, both Pettitt and Mann-Whitney tests identify 1980 (1982) as a change point in the mean of annual 
precipitation series at 32 (8) stations while both Lombard Mood and Mood identify 1980 (1982) as a change point 
in the variance of annual precipitation series at 9 (5) stations.

For multiple change points (1981 and 1984) in annual precipitation series at the seven stations of the northern 
region, when the time interval (4 years) between two change points in the time series is less than 10 years, the 
change point (1984) closer to the current time is identified as the final one (Friedman et al., 2016). Therefore, the 
mean and variance of annual precipitation series have abrupt changes in 1979 in the southern region, 1979 and 
1981 in the western region, 1980 and 1982 in the eastern region, 1981 and 1984 in the middle region, and 1984 
in the northern region. Five time series plots corresponding to the five specified rainfall stations of five regions in 
Norway are used to further reveal abrupt changes in the mean or variance of annual precipitation series (Figure 3).

Second, detected change points were used to divide the entire time series into subsets, in which each subset and 
the entire time series would be tested for the occurrence of monotonic trends. Table 4 summarizes the results of 
the Mann-Kendall Test at a significance level of 0.05 on the trend changes in the annual precipitation series at 159 
stations of five regions in Norway. It is easy to find that none of the first segment in the annual precipitation series 
at 117 stations has a monotonic trend while both the second segment and the entire time series with a change point 
have significant increasing trends. Besides, the annual precipitation series at the other 42 stations have neither 
change points nor monotonic trends at a significance level of 0.05. The results demonstrate that abrupt change 

Region (stations) Change point
Anderson 
Darling

Distribution Mean Variance

Kolmogorov-
Smirnov

Cramer-von 
Mises Pettitt test Mann-Whitney Lombard Mood Mood

East (49)a Single 1980 (32)b 1980 (32) 1980 (9) 1980 (9)

1982 (8) 1982 (8) 1982 (5) 1982 (5)

Multiple

None 49c 49 49 9 9 35 35

South (11) Single 1979 (10) 1979 (10) 1979 (5) 1979 (5)

Multiple

None 11 11 11 1 1 6 6

West (24) Single 1979 (13) 1979 (13) 1979 (5) 1979 (5)

1981 (5) 1981 (5) 1981 (2) 1981 (2)

Multiple

None 24 24 24 6 6 17 17

Middle (22) Single 1981 (11) 1981 (11) 1981 (6) 1981 (6)

1984 (6) 1984 (6) 1984 (2) 1984 (2)

Multiple

None 22 22 22 5 5 14 14

North (53) Single 1981 (7) 1981 (7) 1981 (6) 1981 (6)

1984 (25) 1984 (25) 1984 (9) 1984 (9)

Multiple 1981 and 1984 (7)

None 23 53 53 21 21 38 38
aThe number in the square bracket is the total number of rainfall gauge stations in the region. bThe number in the bracket is the number of stations where annual 
precipitation series have change points. cThe number in the bracket is the number of stations where annual precipitation series have no change point.

Table 3 
Results of Multiple Methods at a Significance Level of 0.05 on the Abrupt Changes in the Distribution, Mean and Variance of Annual Precipitation Series at 159 
Stations of Five Regions in Norway
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detection should be executed prior to trend analysis for effectively ascertaining the nonstationary characteristics 
in every segment and the entire time series.

Figure 4 reveals the observed trends in mean and variance of annual precipitation series corresponding to the 
159 rainfall stations in five regions of Norway during the second segment (in the wake of the change point) in 
comparison to those of the first segment (prior to the change point). Two important findings are gained. First, the 
changes in the mean of annual precipitation series in eastern, southern and western regions are distinguishably 
larger than those in middle and northern regions. Second, the mean and variance of annual precipitation series 
increase by 32% and 16% at most, respectively.

Previous analyses concentrated mainly on detecting the global trends of the entire precipitation series, where no 
increasing trends were identified in the segments of precipitation series at a Norwegian scale (Dyrrdal et al., 2016; 
Ingebrigtsen et al., 2014, 2015). At local and regional scales (for instance, Porsanger fjord and southern Norway) 
and in several periods (for instance, summer and winter), increasing trends of the entire precipitation series were 
identified (Blanchet et  al.,  2015; Cieszyńska & Stramska,  2018; Dyrrdal et  al.,  2016). Our findings provide 
clear evidence that the mean (variance) values of annual precipitation series at 122 (49) stations have significant 

Figure 3.  Abrupt changes in the mean or variance of annual precipitation series corresponding to the five specified rainfall stations of five regions in Norway (a. 
Dombaas in the east; b. Kjevik in the south; c. Utsira Fyr in the west; d. Vaernes in the middle; and e. Bodo in the north) at a significance level of 0.05.
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increasing trends across Norway over the past 70 years, corresponding to the second segment of annual precip-
itation series.

Third, the Wavelet Analysis was used to detect periodicity values of annual precipitation series. Table 5 presents 
the periodicity values detected by the Wavelet Analysis on the annual precipitation series at the 159 stations of 
five regions in Norway. There are strong temporal patterns of annual precipitation series at most stations in five 
regions of Norway, with two consistent temporal patterns at most stations and no temporal pattern at 32 stations 
during 1950–2019. For instance, a strong temporal pattern is found at scales of 40–50 years, while a less signif-
icant temporal pattern exhibited at scales of 20–30 years for annual precipitation series at stations of the eastern 
region. On the other hand, annual precipitation series from southern and western regions have large values of 
the first periodicity (45–55 years) while those from eastern and southern regions have small values of the second 
periodicity (20–30 years).

To be more specific, Figure 5 reveals the periodicity scale and wavelet variance of wavelet analysis on annual 
precipitation series (1950–2019) with respect to the five specified rainfall stations of five regions (a. Dombaas in 
the east; b. Kjevik in the south; c. Utsira Fyr in the west; d. Vaernes in the middle; and e. Bodo in the north) in 
Norway. It can be observed from the subfigures that the Wavelet Analysis can effectively capture the nonstation-
ary temporal patterns corresponding to specific time localizations for annual precipitation series at five stations. 
According to the changes in real wavelet coefficients (left subfigures), both the first and the second periodicities 
with respect to annual precipitation series at five stations have the continuous hydrological alteration between 
wet and dry years. In addition, from the perspective of the wavelet variance (right subfigures), the first and the 
second periodicities correspond to the first and the second peaks of wavelet variance, respectively. Therefore, it is 
easy to find that the annual precipitation series at five stations have the first periodicities (a: 43 years; b: 48 years; 
c: 48 years; d: 44 years; and e: 45 years) and the second periodicities (a: 24 years; b: 27 years; c: 31 years; d: 
30 years; and e: 32 years).

In brief, the first periodicity (40–50 years or 45–55 years) is the dominant periodic component that can be used to 
best describe the nonstationary annual precipitation series at the stations of five regions in Norway.

Region (stations) Time series

Trend analysis

Increasing Decreasing Neither

East (49)a First segment (Prior to 1980 or 1982)b 40c

Second segment 40d

Entire series 40 9

South (11) First segment (Prior to 1979) 10

Second segment 10

Entire series 10 1

West (24) First segment (Prior to 1979 or 1981) 18

Second segment 18

Entire series 18 6

Middle (22) First segment (Prior to 1981 or 1984) 17

Second segment 17

Entire series 17 5

North (53) First segment (Prior to 1984) 32

Second segment 32

Entire series 32 21
aThe number in the square bracket is the total number of rainfall gauge stations in a region. bTake 1950–2019 time series and change point in 1980 as an example, the 
first segment, the second segment and the entire series are 1950–1980, 1981–2019, and 1950–2019, respectively. cThe number of stations where annual precipitation 
series have no change in trends. dThe number of stations where annual precipitation series have increasing trends.

Table 4 
Results of the Mann-Kendall Test at a Significance Level of 0.05 on the Trend Changes in the Annual Precipitation Series at the 159 Stations of Five Regions in 
Norway
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4.2.  Attribution Analysis of Nonstationary Annual Precipitation Series

Since the MIC can describe not only linear correlation but also nonlinear correlation, its values between annual 
precipitation and teleconnection series were calculated to explain the variability of annual precipitation series 
(Table 6). Considering teleconnection indices with a spatial resolution of 0.5° × 0.5°, the teleconnection value of 
a grid box that is the closest to a rainfall station was adopted to calculate the MIC value.

It is interesting to find that the annual precipitation series of all stations in 
five regions have higher correlation with SCAND and AMO series but have 
lower correlation with EAWR, NAO and MJO series in terms of MIC values. 
This kind of correlation must depend more on annual (SCAND) and interan-
nual-to-decadal (AMO) oscillations than on seasonal oscillation. Therefore, 
it is logical to that the same correlation can be explained by oceanic telecon-
nection indices, instead of winter circulation teleconnection indices. Another 
interesting outcome is that high MIC values for annual precipitation series 
with SCAND and AMO series are obtained for eastern, southern and western 
regions, while low values appear in middle and northern regions.

The main types of precipitation include rain, sleet, snow, ice pellets, and hail. 
The mean annual precipitation values in eastern, southern and western re-
gions are prominently larger than those of middle and northern regions. In 
contrast, the mean annual snowfall values in eastern, southern and western 
regions are distinguishably smaller than those of middle and northern re-
gions. The liquid form of precipitation is more sensible to oceanic indices 
than to winter circulation indices (Blanchet et al., 2015). Therefore, higher 

Figure 4.  Observed trends in mean and variance of annual precipitation series corresponding to the 159 rainfall stations in five regions of Norway during the second 
segment (in the wake of the change point) in comparison to those of the first segment (prior to the change point).

Region (stations)

Periodicity

First Second Neither

East (49)a 40−50 years (34)b 20−30 years (41) 8c

South (11) 45–55 years (8) 20−30 years (11) 0

West (24) 45–55 years (16) 25−35 years (19) 5

Middle (22) 40−50 years (14) 25−35 years (17) 5

North (53) 40−50 years (39) 25−35 years (39) 14
aThe number in the square bracket is the total number of rainfall gauge 
stations in a region. bThe number of stations where annual precipitation series 
have periodicities. cThe number of stations where annual precipitation series 
have no periodicity.

Table 5 
Periodicity Values Detected by the Wavelet Analysis on the Annual 
Precipitation Series at 159 Stations of Five Regions in Norway
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Figure 5.  Periodicity scale and wavelet variance in wavelet analysis of annual precipitation series (1950–2019) 
corresponding to the five specified rainfall stations (a. Dombaas in the east; b. Kjevik in the south; c. Utsira Fyr in the west; 
d. Vaernes in the middle; and e. Bodo in the north) of five regions in Norway.
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Figure 5.  (Continued)

Region (stations)

Annual oscillations Interannual-to-decadal oscillations

SCAND NAO EAWR AMO MJO

Mean (Min−Max) Mean (Min−Max) Mean (Min−Max) Mean (Min−Max) Mean (Min−Max)

East (40/49)a 0.72 (0.64–0.77) 0.34 (0.28–0.38) 0.29 (0.24–0.33) 0.78 (0.67–0.84) 0.26 (0.19–0.34)

South (10/11) 0.76 (0.66–0.81) 0.37 (0.25–0.42) 0.34 (0.29–0.38) 0.81 (0.71–0.87) 0.31 (0.21–0.36)

West (18/24) 0.69 (0.60–0.74) 0.25 (0.18–0.29) 0.31 (0.26–0.35) 0.74 (0.62–0.79) 0.22 (0.15–0.29)

Middle (17/22) 0.62 (0.55–0.69) 0.31 (0.23–0.35) 0.22 (0.18–0.27) 0.68 (0.59–0.73) 0.27 (0.20–0.31)

North (32/53) 0.58 (0.51–0.66) 0.26 (0.21–0.30) 0.28 (0.21–0.34) 0.64 (0.56–0.75) 0.19 (0.16–0.27)
aValues in the square bracket is the number of rainfall gauge stations in a region, where annual precipitation series have 
abrupt and trend changes at the same time versus the total number of stations in the region.

Table 6 
Maximal Information Coefficient (MIC) Values Between Annual Precipitation and Teleconnection Series at Rainfall 
Stations in Five Regions of Norway
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correlation of annual precipitation series with the SCAND and AMO series (oceanic indices) occurs in eastern, 
southern and western regions (Figure 6). In other words, stronger phases of SCAND and AMO series give rise 
to more annual precipitation and significant variability in those regions. The results reveal that the variability of 
annual precipitation series is eminently associated with the northern hemisphere annual and interannual-to-dec-
adal oscillations. Changes in rain-on-snow events typically contribute to the majority of flooding in middle and 
northern regions (Li et al., 2019), and the attribution to interconnection is also important (Pall et al., 2019).

In this study, the Python 3.8 software was used to visualize the kernel density estimation of the joint distribution 
between the annual precipitation series and the teleconnection indices. Figure 7 exhibits the kernel density esti-
mation of the joint distribution between the annual precipitation series (1950–2019) and the SCAND and AMO 
series corresponding to the five specified rainfall stations (a. Dombaas in the east; b. Kjevik in the south; c. Utsira 
Fyr in the west; d. Vaernes in the middle; and e. Bodo in the north) of five regions in Norway. Three important 
findings are noted. First, the positive and negative phases of SCAND and AMO series are closely associated 
with annual precipitation series over five regions of Norway. Second, the upward hook structure (left subfigures) 
appears in the correlation between the annual precipitation and the SCAND series. In contrast, the downward 
hook structure (right subfigures) occurs in the correlation between the annual precipitation and the AMO series. 
Third, the northern hemisphere annual (SCAND) and interannual-to-decadal (AMO) oscillations can reasonably 
explain the causes of nonstationary annual precipitation series during 1950 and 2019 in terms of the MIC values 
(0.60–0.82). Such hook structures are probably due to the variation in sea level pressure, where the subtropical 
Azores High (subpolar Icelandic Low) tends to move toward (away from) Europe (Börgel et al., 2020; Casanueva 
et al., 2014).

Table 7 summarizes the calculated MIC values between real wavelet coefficients of each periodicity and SCAND 
and AMO series at the rainfall stations in five regions of Norway. The wavelet coefficients of the first periodicity 
have higher correlation coefficient values for all stations of five regions. The wavelet coefficients of the second 

Figure 6.  Spatial distribution of maximal information coefficient (MIC) values between annual precipitation series and the (a) Scandinavian pattern (SCAND) and (b) 
Atlantic Multidecadal Oscillation (AMO) series.
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periodicity display lower correlation coefficient values for all stations of five regions. The correlation results 
again demonstrate that the first periodicity (40–50 years or 45–55 years) is the dominant periodic component. 
Such periodic component can be used to best describe the annual precipitation series of five regions in Norway. 
Furthermore, the periodic characteristics of the annual precipitation series at the stations of five regions in Nor-
way can be attributed to the northern hemisphere annual (SCAND) and interannual-to-decadal (AMO) oscilla-
tions in terms of the MIC values. This study concentrates on analyzing annual scale factors instead of seasonal 
scale factors. At an annual scale SCAND and AMO are considered to be the driving factors. At a seasonal scale 
El Niño-Southern Oscillation (ENSO) and NAO are considered to have influences on summer and winter precip-
itation, respectively (Craig & Allan, 2021; Seager et al., 2020; Uvo, 2003).

In general, the SCAND and AMO series that are two of the most prominent oscillations of climatic variability 
in North Atlantic areas significantly influence Norwegian precipitation. Whereas previous studies (e.g., Asong 

Figure 7.  Kernel density estimation of the joint distribution between the annual precipitation series (1950–2019) and the Scandinavian pattern (SCAND) and Atlantic 
Multidecadal Oscillation (AMO) series corresponding to the five specified rainfall stations (a. Dombaas in the east; b. Kjevik in the south; c. Utsira Fyr in the west; d. 
Vaernes in the middle; and e. Bodo in the north) of five regions in Norway.
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et al., 2018; Blöschl et al., 2020; Nalley et al., 2019) concentrated on attributing Norwegian precipitation trend 
change, this study proffers a comprehensive perspective and explores annual and interannual-to-decadal telecon-
nections for explaining the causes of abrupt changes, trends and periodicities of annual precipitation series. The 
SCAND and AMO series can affect regional climatic patterns in the Northern Hemisphere and account for most 
of the precipitation variability over the Northern European and North Atlantic areas. The SCAND and AMO 
series also explain most of the precipitation variability for the whole Norway mainland over annual and decadal 
time scales.

In summary, our study indicates that the proposed approach can help detect the abrupt change, trend and perio-
dicity of annual precipitation series meanwhile suitably explain the causes of the nonstationary characteristics 
associated with northern hemisphere annual and interannual-to-decadal oscillations.

5.  Conclusions
Understanding the nonstationarity of precipitation time series and their correlation with atmospheric processes 
can help improve the resilience of stormwater infrastructure, community, and living conditions in response to 
climate change. In this study, multiple comparison procedures, that is, the Mann-Kendall test and the Wavelet 
Analysis, were adopted to detect the variability characteristics (abrupt change, trend and periodicity) of the annu-
al precipitation series at 159 rainfall stations of five regions in Norway. The MIC-based correlation analysis was 
employed to explain the causes of the nonstationarity in long term (1950–2019) annual precipitation series from 
the standpoint of atmospheric teleconnection. The findings of this study are summarized as follows.

At a significance level of 0.05, no abrupt changes are observed in the distribution of annual precipitation series 
at all stations. Significant abrupt changes occur in the mean (variance) value of annual precipitation series at 117 
(49) out of 159 stations of five regions in Norway. The change points in the annual precipitation series vary from 
1979 to 1984.

At a significance level of 0.05, the mean (variance) values of annual precipitation series at 117 (49) out of 159 
stations show noticeably increasing trends. The changes in the mean of the annual precipitation series at eastern, 
southern and western regions are distinguishably larger than those in middle and northern regions. The changes in 
the variance of the annual precipitation series in five regions are evenly distributed. The changes in the mean and 

Region

MIC value between wavelet coefficients and SCAND series

For the first periodicity For the second periodicity

Mean (Min–Max) Mean (Min–Max)

East 0.71 (0.50–0.81) 0.39 (0.21–0.48)

South 0.76 (0.58–0.87) 0.32 (0.24–0.41)

West 0.73 (0.52–0.84) 0.35 (0.20–0.43)

Middle 0.64 (0.53–0.77) 0.41 (0.32–0.49)

North 0.68 (0.55–0.79) 0.37 (0.29–0.46)

Region

MIC value between wavelet coefficients and AMO series

For the first periodicity For the second periodicity

Mean (Min–Max) Mean (Min–Max)

East 0.66 (0.46–0.74) 0.33 (0.23–0.41)

South 0.73 (0.52–0.82) 0.31 (0.26–0.39)

West 0.71 (0.48–0.75) 0.29 (0.21–0.37)

Middle 0.61 (0.44–0.72) 0.38 (0.29–0.45)

North 0.65 (0.49–0.77) 0.34 (0.27–0.43)

Table 7 
Maximal Information Coefficient (MIC) Values Between Real Wavelet Coefficients of Each Periodicity and the Scandinavian Pattern (SCAND) and Atlantic 
Multidecadal Oscillation (AMO) Series at Rainfall Stations in Five Regions of Norway
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variance of annual precipitation series in the wake of change points fall within the intervals of [+3%, +32%] and 
[+3%, +16%], respectively, in comparison to those of annual precipitation series prior to change points.

Two consistent temporal patterns of annual precipitation series are noticed for most rainfall stations in five re-
gions of Norway. The first periodicity varies between 40 and 50 years (or 45–55 years) while the second perio-
dicity varies between 20 and 30 years (or 25–35 years). The first periodicity (40–50 years or 45–55 years) is the 
dominant periodic component and can be employed to best characterize the nonstationary annual precipitation 
series at the stations of five regions in Norway.

Two consistent correlation structures are identified. The correlation between the annual precipitation series and 
the SCAND series forms an upward hook structure because the subtropical Azores High moves toward Europe. 
The correlation between the annual precipitation series and the AMO series tends to have a downward hook struc-
ture because the subpolar Icelandic Low moves away from Europe. The northern hemisphere annual (SCAND) 
and interannual-to-decadal (AMO) oscillations can reasonably explain the causes of nonstationary annual precip-
itation series in terms of the MIC values.

Detection and attribution of nonstationary precipitation series could assist in understanding the variability of 
precipitation series and their associations with teleconnection indices. It also paves the way for new possibilities 
regarding nonstationary hydrological frequency analysis. This study utilizes the bivariate correlation analysis to 
explain the impacts of atmospheric processes on precipitation nonstationarity. The MIC aims to detect associa-
tions in large data sets. The computation accuracy of the MIC is limited to the sample size. The larger the sample 
size, the higher the computation accuracy of the MIC. More extensive research to warrant the effect of sample 
size on the computation accuracy of the MIC will be explored in the future.

Appendix A:  Prewhitening-Based Mann-Kendall Test
An autocorrelation would not guarantee to identify a time series when it has a trend. The autocorrelation coeffi-
cient with lag-k is described as follows.

r𝑘𝑘 =

∑m−𝑘𝑘

𝑘𝑘=1
(z𝑡𝑡 − z̄𝑡𝑡) ⋅ (z𝑡𝑡+𝑘𝑘 − z̄𝑡𝑡+𝑘𝑘)

∑m−𝑘𝑘

𝑡𝑡=1
(z𝑡𝑡 − z̄𝑡𝑡)

2
⋅

∑𝑡𝑡=1

m−
(z𝑡𝑡+𝑘𝑘 − z̄𝑡𝑡+𝑘𝑘)

2
� (A1)

where 𝐴𝐴 𝐴𝐴𝑘𝑘 is the autocorrelation coefficient with lag-k. m is the number of data points within a time series. 𝐴𝐴 z𝑡𝑡 and 
𝐴𝐴 z𝑡𝑡+𝑘𝑘 are the sample values of the first m-k terms and the last m-k terms in a time series, respectively. 𝐴𝐴 𝐴z𝑡𝑡 and 𝐴𝐴 𝐴z𝑡𝑡+𝑘𝑘 

are the mean values of the first m-k terms and the last m-k terms in a time series, respectively. Additionally, the 
Student's t statistical test is adopted to test the hypothesis of serial dependence for the autocorrelation coefficient 

𝐴𝐴 𝐴𝐴𝑘𝑘 as the null hypothesis H0: 𝐴𝐴 𝐴𝐴𝑘𝑘 = 0 , and the alternative hypothesis H1: 𝐴𝐴 𝐴𝐴𝑘𝑘 = 0 . The statistic of the test is described 
below.

td = |𝑟𝑟𝑘𝑘| ⋅

√
𝑚𝑚 − 2

1 − r𝑘𝑘2
� (A2)

where td is the statistic of the test, which has a Student's t-distribution with m − 2 degrees of freedom. When 
𝐴𝐴 |td| > 𝑡𝑡 𝛼𝛼

2
 occurs, the null hypothesis H0 will be rejected at the significant level 𝐴𝐴 𝐴𝐴 . That is to say, the significant 

autocorrelation appears in a time series.

For annual precipitation time series 𝐴𝐴 𝐴𝐴𝑡𝑡 , the lag-1 autocorrelation coefficient (𝐴𝐴 𝐴𝐴1 ) is commonly used to remove 
serial autocorrelation (Yue et al., 2003).

𝑃𝑃 ′
𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝑟𝑟1 ⋅ 𝑃𝑃𝑡𝑡−1� (A3)

where 𝐴𝐴 𝐴𝐴1 is the lag-1 autocorrelation coefficient. 𝐴𝐴 𝐴𝐴 ′
𝑡𝑡
 is the corrected precipitation time series by using the lag-1 

autocorrelation coefficient in the tth time.

After eliminating serial correlation, the Mann-Kendall test is adopted to identify statistically significant trends 
for a time series. In the Mann-Kendall test, the null hypothesis H0 is that there is no trend in a time series while 
the alternative hypothesis H1 is that there is a (decreasing or increasing) trend over time. The computations of 
Mann-Kendall statistic S, variance of S, and standardized normal statistic Z are described as follows.
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𝑆𝑆 =

m−1∑

𝑖𝑖=1

m∑

𝑗𝑗=𝑖𝑖+1

sig(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖)� (A4a)

sig(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

+1, if(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖) > 0

0, if(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖) = 0

−1, if(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖) < 0

� (A4b)

Var(𝑆𝑆) =
1

18
[𝑚𝑚 ⋅ (𝑚𝑚 − 1) ⋅ (2𝑚𝑚 + 5) −

q∑

𝑖𝑖=1

𝑡𝑡𝑖𝑖 ⋅ (𝑡𝑡𝑖𝑖 − 1) ⋅ (2𝑡𝑡𝑖𝑖 + 5)]� (A5)

𝑍𝑍 =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

S − 1
√

Var(S)
, if 𝑆𝑆 𝑆 0

0, if 𝑆𝑆 = 0

S + 1
√

Var(S)
, if 𝑆𝑆 𝑆 0

� (A6)

where 𝐴𝐴 sig(⋅) is the sign function. 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑗𝑗 are the observations of time series in chronological order. 𝐴𝐴 Var(S) is the 
variance of statistic S. q is the total number of tie groups in a time series. 𝐴𝐴 𝐴𝐴𝑖𝑖 is the number of data points contained 
in the ith tie group. Z is the standardized normal statistic. A positive value of statistic Z suggests an increasing 
trend in a time series while a negative one suggests a decreasing trend. When 𝐴𝐴 |Z| > Z1−𝛼𝛼∕2 , where 𝐴𝐴 𝐴𝐴 is the signif-
icant level, the trend is statistically significant (e.g., 𝐴𝐴 𝐴𝐴 = 0.05 , and 𝐴𝐴 Z1−𝛼𝛼∕2  = 1.96).

Data Availability Statement
Precipitation data extracted from the Global Summary of the Day (GSOD) datasets are accessible on the web-
site of the National Climate Data Center (https://catalog.data.gov/dataset/global-surface-summary-of-the-day-
gsod), the North Atlantic Oscillation (NAO), the East Atlantic/Western Russia pattern (EAWR) and the Atlantic 
Multidecadal Oscillation (AMO) are accessible on the website of the National Oceanic and Atmospheric Ad-
ministration (https://psl.noaa.gov/data/climateindices/list/), the Scandinavian pattern (SCAND) is accessible on 
the website (https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml), and the Madden-Julian Oscillation 
(MJO) is accessible on the website (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/mjo_iso.html).
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