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Steps Toward a Philosophy 
for Mathematicians Jens Erik Fenstad

A 
philosophy of mathematics is not necessarily a 
philosophy for mathematicians. This was 
forcefully argued by Ian Hacking in his 
recent book Why Is There Philosophy of 
Mathematics at All? [19], in which he 
expresses a deep skepticism of almost all 

there is of current philosophy of mathematics and reports 
at length on actual mathematical practice, on the nature of 
proofs, and on the variety of applications as seen within 
the mathematical community. His discussion contains deep 
and important insights, but it seems fair to say that no gen-
eral foundation for the working mathematician emerges in a 
convincing way from his account.

There are many points of contact between Hacking’s 
book and the approach that we developed in our 2018 
book Structures and Algorithms [16]. We believe that it is 
possible to extract from that book a reasonably complete 
philosophy for the working mathematician. This is what we 
shall attempt to do in this paper, using Thoralf Skolem as 
our guide.

But before starting on this task, we should note that 
there is currently much work being done in what is called 
the philosophy of mathematical practice; for a brief over-
view of this field, see the 2008 collection [25] edited by 
Paolo Mancosu. There is much common ground between 
the philosophy of mathematical practice as discussed in [25] 
and the philosophy for mathematicians that is the topic of 
this work. But there is an important difference: the former 
attempts to analyze what mathematicians do, whereas our 
interest is to understand what they should be doing.

Skolem 1920
One hundred years ago, the Norwegian mathematician 
Thoralf Albert Skolem published the first of a series of 
remarkable papers on logic and the foundations of math-
ematics [33]. That 1920 paper, modestly announced as some 
“logical-combinatorial investigations”1 on the satisfiability 

and provability of mathematical propositions, introduced 
new technical tools into logic such as what are now known 
as Skolem functions and Skolem normal forms. The main 
technical result was an extension of a 1915 result of 
Leopold Löwenheim [23] on the existence of countable 
models for finite and countably infinite sets of consistent 
first-order formulas. That result, known as the extended 
Löwenheim–Skolem theorem, was a basis for Skolem’s next 
paper [34], published in 1922, titled “Some remarks on 
axiomatized set theory.”2 In that paper, Skolem first made 
some important improvements to the Zermelo axiomatiza-
tion before using the Löwenheim–Skolem theorem to prove 
the existence of countable models for every first-order set 
of axioms for set theory.

In 1923, he published a paper rich in content on the 
“recursive mode of thought” (rekurrierende Denkweise) 
as a basis for elementary arithmetic. This paper has been 
seen as a first step toward the development of recursive 
mathematics. It is also possible to see the 1923 paper as a 
starting point for a line of investigation, continued in [36], 
on a bottom-up combinatorial approach to provability in 
first-order logic. Finally, in 1934, he published a paper [39] 
titled “On the impossibility of a complete characteriza-
tion of the sequence of integers by means of a finite or 
countably infinite axiom system with exclusively integer 
variables.”3 This was a remarkable result showing that not 
only set theory but also Peano arithmetic necessarily admits 
nonstandard models.

Skolem Pre‑1920
In order to understand what Skolem achieved during the 
1920s, one must have a proper understanding of what he 
did during the previous decade. To highlight just one exam-
ple, his great paper on the “recursive mode of thought” 
cannot be understood without taking into account his expe-
riences as a young mathematician in Göttingen during the 
First World War. We quote from [15, pp. 62–63]

1“Logisch-kombinatorische Untersuchungen.”
2“Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre.”
3“Über die Nichtcharakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich 
Zahlenvariablen.”

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-022-10190-1&domain=pdf
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“Es kommt doch auch bei der Begründung der Math-
ematik auf die Sache und nicht auf die Bezeichnung 
an.” The words are Skolem’s and occur towards the 
end of his 1923 paper on the Begründung der elemen-
taren Arithmetik durch die rekurrierende Denkweise.4 
Thoralf Skolem, who wrote this paper in 1919, had 
at that time become acquainted with the approach to 
elementary arithmetic in the Principia Mathematica 
of Russell and Whitehead, and he was not at all 
convinced. Natural numbers and their fundamental 
properties need not—and should not—be justified 
through an exercise in abstract logic. This seems to 
be a strongly held belief of Skolem, firmly rooted in 
his early education and work experiences. By 1919 he 
had already been exposed to a wide range of problems 
and projects in both pure and applied mathematics. 
His master thesis in mathematics from 1913 [31] was 
a profound study of the algebraic logic of Peirce and 
Schröder. His first employment was as a student assis-
tant to the well-known Norwegian physicist K. Birke-
land in the years 1909 to 1914. His special assignment 
was to help with the mathematics of several geophysi-
cal phenomena. In 1917 he published his first major 
mathematical paper Untersuchungen über einige 
Klassen kombinatorischer Probleme.5 It is therefore 
not surprising that he was not at all convinced when 
he in Göttingen in the winter 1915–1916 first learned 
about the Russell and Whitehead approach to elemen-
tary arithmetic in the Principia Mathematica [46]. We 
get the impression that Skolem through his work in 
algebra, combinatorics and geophysics “knew” what 
numbers are, and that his 1923 paper can be seen as 
a protest against the approach of Russell and White-
head. In this paper he takes the first steps towards a 
more “correct” approach by developing what has later 
become known as primitive recursive arithmetic, and 
we would argue that to choose the “rekurrirende Den-
kweise” as a foundation for “real” mathematics was 
almost to be expected from an expert in combinatorial 
analysis. He develops his theory within a free variable 
logic formalism, but he is not entirely satisfied. Too 
much of “die Bezeichnung” of Russell and Whitehead 
remains, and he promises a further paper on the real 
“Sache,” which will strictly follow the views of Kro-
necker that “eine mathematische Bestimmung dann 
und nur dann eine wirkliche Bestimmung ist, wenn 
sie mit Hilfe endlich vieler Versuche zum Ziele führt.”6 
But the promised paper never appeared.

Neither Kronecker nor Skolem tells us what a number 
exactly is. But an answer to this problem is, however, 
only part of the challenge. The world of mathemat-
ics contains, as we noted above, in addition to the 
“discrete” objects of arithmetic, also the “continuous” 
objects of geometry. Is Russell’s logic and Zermelo’s 
axioms for Cantorian set theory an answer to the 
question of existence? Neither Kronecker nor Skolem 
would agree. Mathematics is more than an axiomatic 
exercise in logic and abstract set theory. In a popular 
lecture given at the Christian Michelsen Institute in 
Bergen in 1932 [38] Skolem says:

If one works within a completely formalized 
mathematics, based on a finite number of precisely 
stated axioms, there is nothing to discuss but ques-
tions of consistency and ease of manipulation. But 
in ordinary mathematical practice, e.g. in the usual 
studies on continua which are never given by a 
set of specified formal construction principles, the 
axiom of choice is, in my opinion, definitely unde-
sirable – a kind of scientific fraud.7

Leaving the question of “scientific fraud” aside, 
a challenge to “ordinary mathematical practice” 
remains, to explain what kind of objects numbers and 
geometric objects are.

This ends our quotation from [15]. We shall return to 
the promised Skolem foundation of mathematics in the last 
section of this paper. But first some remarks on Skolem as a 
working logician—what he did and what he missed.

Skolem the Founder
What Skolem did in [40] is well summarized by Hao Wang 
in [45]. We quote here from the updates in the Fen-
stad–Wang article on Skolem in [17, p. 134]:

A comprehensive unifying theme is the nature of quanti-
fiers (with infinite ranges):

1.	 The Skolem functions and countable models as a gen-
eral method of analyzing quantifiers both in pure logic 
and in axiomatic theories.

2.	 The founding of recursive arithmetic as a method of 
developing mathematics on a quantifier-free basis.

5Skolem, “Untersuchungen über Einige Klassen Kombinatorischer Probleme.” Oslo [32].
6This is translated as “… a mathematical definition is a genuine definition if and only if it leads to the goal by means of a finite 
number of trials” in van Heijenoort, From Frege to Gödel, p. 333.
7The original text is in Norwegian; see Skolem, Undersøkelser over Potensrester Og over Logisk Karakterisering Av Tallrekken: “Vil 
man gå over til en konsekvent formalistisk matematikk, basert på et endelig antall eksakt formulerte aksiomer, så er der intet annet 
å innvende, enn at der kan være spørsmål om motsigelsesfrihet og hensiktsmessighet o. l. Men innenfor den matematiske praksis, 
slik den vanligvis drives med kontinua, som slett ikke er gitt i kraft av de og de bestemte oppregnede konstruksjonsprinsipper, er 
utvalgsaksiomet efter min mening avgjort en uting—en slags videnskabelig svindel.”

4Skolem, “Begründung Der Elementären Arithmetik Durch Die Rekurrierende Denkweise Ohne Anwendung Scheinbarer Veränder-
lichen Mit Unendlichem Ausdehnungsbereich” [35]. The German text is translated as “Yet, even in providing a foundation for 
mathematics it is the substance that is important, not the notation” in van Heijenoort, From Frege to Gödel, 333. I am not happy 
with the translation “substance” of the word “Sache”; I would argue that “Sache” in this context refers to what there is.
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3.	 The invention and powerful applications of the deci-
sion method of eliminating quantifiers for axiomatic 
theories.

4.	 Various results on the decision and reduction 
problems of quantification theories (e.g. the Skolem 
normal form).

5.	 The classic explication of Zermelo’s concept of 
“definite property” by the notation of quantification 
theory.

6.	 The discovery and emphasis on non-standard models 
of axiomatic number theory and set theory.

Indeed, as Wang concludes in his survey, Skolem “partici-
pated in the founding of these subjects by introducing ini-
tially several of the basic ideas in their concrete and naked 
form” [17, p. 135].

Skolem’s positive contributions are truly impressive. 
But great men may sometimes have a “blind eye.” We have 
listed a series of results of what he saw. Let us balance this 
by one rather important example of what he did not see: 
the case of infinitesimals. We quote a few paragraphs from 
[15, pp. 58–60]:

A secure logical foundation for analysis emerged only 
in the 1870s through the work of Cantor, Dedekind 
and Weierstrass. And the new foundation had no 
room for infinitesimals. This was strongly expressed 
by A. Fraenkel in his well known text on Mengen-
lehre: “Bei dieser Probe hat aber das Unendlichkleine 
restlos versagt.”8 In a certain sense, set theory and 
its use in the foundation of analysis marked a victory 
for the discrete over the continuous: In the begin-
ning there is the empty set—the rest, including the 
geometric continuum, is an exercise in set theoretic 
constructions.

The standard view on analysis was firmly seconded 
by Skolem. In a lecture to a Scandinavian congress in 
1929 [37] he argued against using infinitesimals as a 
foundation:

We know that such entities can be introduced—
they can be exhibited in so-called non-Archime-
dean number systems—but it is not possible to 
construct a calculus of infinitesimals on such a 
foundation.9

There may indeed be entities in the mathematical 
universe that exhibit the “defining” properties of 

infinitesimals, but the question of interest to us is if 
infinitesimals exist in an (elementary) extension of the 
real number system, and if there is enough room on 
the “real” geometric line to faithfully represent the 
extended number system. This is what Skolem denies 
in his 1929 lecture.

But do not always listen to what great men say. In 
1934 Skolem constructed his non-standard extension 
of the natural number system,10 i.e. he constructed an 
“object” *N as a proper elementary extension of the 
natural number system N, where “elementary exten-
sion” means that all the basic rules of arithmetic are 
preserved in the extension from N to *N. As a proper 
extension *N must contain at least one infinitely large 
number, hence the inverse of any infinitely large 
number in *N will be a true infinitesimal. This was 
observed by Abraham Robinson in 1960:

In the fall of 1960 it occurred to me that the con-
cepts and methods of contemporary Mathematical 
Logic are capable of providing a suitable frame-
work for the development of the Differential and 
Integral Calculus by means of infinitely small and 
infinitely large numbers.11

Starting from the infinitely large numbers and the 
infinitesimals, Robinson was led to a richer set of points 
on the geometric line, usually called the hyper-reals 
and denoted by *R. We recall that *R is, in the technical 
language of logic, a proper (and saturated) elementary 
extension of R, containing both infinitesimals and their 
inverses, the infinitely large numbers; see in addition 
to Robinson also Keisler12 and Fenstad.13 The construc-
tion of the coordinate field *R is from our point of 
view primarily a method of constructing new points 
on the geometric line. The coordinate set *R has strong 
closure properties and we may, similarly to the standard 
approach, “forget” the ambient geometric space and 
choose one version of *R as the extended geometric 
line. But this is not, we would insist, correct. The set of 
“coordinates” *R is not the geometric object, but only 
one method of “naming” points in the continuum. We 
are therefore at liberty to create different “point-sets,” 
or more correctly, different coordinate structures, on 
the geometric line for different purposes.

So much for our quotation from [15]. We add that Rob-
inson was careful to acknowledge his debts to Skolem’s 

8“In this test, however, the infinitely small has completely failed.” Fraenkel, Einleitung in die Mengenlehre, p. 116. The test referred 
to is how to prove a mean value theorem for arbitrary intervals, including infinitesimal ones; see section 6.1, on the Klein–Fraenkel 
criterion, in Kanovei, Katz, and Mormann, “Tools, Objects, and Chimeras.”
9Skolem, “Über die Grundlagendiskussionen in der Mathematik.”
10Skolem, “Über die Nichtcharakterisierbarkeit der Zahlenreihe mittels endlich oder abzählar unendlich vieler Aussagen mit aus-
schliesslich Zahlenvariablen.”
11Robinson, Nonstandard Analysis [29].
12Keisler, “The Hyperreal Line” [21].
13Fenstad, “Nonstandard Analysis Relevant for the Philosophy of Mathematics?”; and Fenstad, “+The Discrete and Continuous in 
Mathematics and the Natural Sciences.”
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work on nonstandard models of arithmetic. Skolem died in 
1963, and it is highly doubtful whether he ever learned of 
the new infinitesimal analysis. We can therefore not know 
whether he would have changed his view from 1929 and 
admitted that there is room for infinitesimals on the geo-
metric line.

That is history past. Today, nonstandard analysis is 
a thriving branch of mathematics. The tension between 
the discrete and the continuous has always been a central 
theme in mathematics. Infinitesimals can be seen as a bridge 
between the two; see [42] and the recent survey [18] by 
Goldbring and Walsh. We shall return to this “tension” in 
the next section.

Skolem the Skeptic
Toward the end of the nineteenth century, there was a 
development toward a unified approach to mathematics. 
A driving force behind this development was the need to 
understand the nature of “real” numbers. Mathematicians 
had learned to live with the tension between counting 
and the discrete on the one hand and geometry and the 
continuous on the other. This tension has a long history. 
We may mention early sources such as the Liber Abbaci by 
Fibonacci from the early thirteenth century on the discrete 
and the book A Commentary on the First Book of Euclid’s 
Elements by Proclus from the fifth century on the continu-
ous. For a long period, the two views lived peacefully side 
by side, with professional mathematicians being happy 
to apply their new tools both to nature and to problems 
internal to the formalism, Euler being an excellent example. 
But during the nineteenth century, there was a growing 
unease inside the mathematical tribe concerning the “cor-
rect” understanding of how an arithmetic approach to the 
geometric continuum could be possible in a consistent way.

One way of connecting the two is through the act of 
measurement. Measurements create in the continuum 
points and intervals, hence also parts of or fractions of 
intervals. But do the points we create through this process 
exhaust the continuum? Is the geometric continuum a set 
of points each labeled by a unique “number”?

There were at the time two possible candidates for a 
foundation of mathematics, one being logic and Russell’s 
theory of types and a second being Cantor’s set theory. 
Many mathematicians nodded politely in the direction of 
Russell’s theory of types but turned to Cantor for their 
daily work. A notable example is G. H. Hardy. One factor in 
favor of Cantor was the Dedekind analysis of numbers and 
the follow-up construction of the reals, which reached a 
high point in the later axiomatization of set theory by Zer-
melo. This seemed to be the way forward, but at least one 
young mathematician was at the time not convinced.

That man was Skolem. We saw above in the section 
“Skolem Pre-1920” how he reacted to the Russell–White-
head-type theoretical analysis of natural numbers, and also 
his skepticism toward any first-order axiomatization of set 
theory based on his proof of the existence of countable 
models for first-order theories. For Skolem the skeptic, it 
was structures and algorithms that were of importance—
axioms are at most a tool, not a foundation.

In a certain sense, set theory resolved the tension 
between the discrete and the continuous in favor of the 
discrete. But today we have seen how geometry has fought 
back. The story is a bit complicated, but it needs to be told. 
Our starting point is a lecture by Per Martin-Löf from 1983, 
“Constructive Mathematics and Computer Programming” 
[26]. He starts from the fact that computing and algorithms 
have become of increasing importance in mathematics. But 
he further notes that if one wants to move from com-
puter science (the technology of the computing device) to 
computing science (the algorithms), there is a need for an 
appropriate language that reflects this shift in structural 
understanding. He then observes that current set theory is 
not a suitable formalism for this purpose and proposes to 
build on his constructive theory of types. We see an echo 
of Russell and his theory of types in this proposal, but 
Martin-Löf moves far beyond that.

The task set by Martin-Löf in using his constructive 
type theory as a programming language was not at all 
trivial; in particular, great care has to be taken in the treat-
ment of the so-called identity types, but he succeeded. A 
first success was several important advances in the con-
struction of proof assistant systems. But that is not the end 
of the story.

Martin-Löf’s analysis was dominated by syntactic and 
proof-theoretic concerns. But questions about “identity” 
were also present in other parts of mathematics; see the re-
cent “Modeling Homotopy Theories” [5]. It turned out that 
these were two sides of the same concern: a certain class 
of homotopy type structures was seen to provide a “true” 
semantic interpretation of the syntax of the Martin-Löf 
theory [4]. This important insight has led to an extensive 
development, and as expected, it is now the semantics, that 
is, the geometric structure, that occupies the central role. 
The discrete has disappeared in favor of synthetic spaces, 
an approach to geometry based on “abstract shapes” not 
initially built out of points; we quote a few words from an 
introductory survey to this topic by Shulman [30]:

if all objects in mathematics come naturally with spatial 
structure, then it is perverse to insist on defining them 
first in terms of bare sets, as is the official foundational 
position of most mathematicians, and only later equip-
ping them with spatial structure. Instead, we can replace 
set theory with a different formal system whose basic 
objects are spaces.

With HOTT, which is now the standard acronym for the 
new homotopy type theory, we have a genuine geometric 
approach to mathematics; see the Bernays Lectures by Vo-
evodsky [44] and the Skolem Lecture by Awodey in [3].

Let us at this point recall a comment made earlier. We 
had taken note of the tension between the discrete and the 
continuous and how the infinitesimals in a certain sense 
act as a bridge between the two. We had already, in the 
early 1980s, suggested that the geometric real line is not a 
point set, see [12], and showed how this point of view had 
offered richer possibilities to model natural phenomena; 
see as an example the paper [1] on singular perturbations 
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of differential operators by Albeverio et al. But a synthetic 
theory of “abstract shapes” was not part of our agenda.

Skolem did not live to see these developments. But if he 
had, how would he have responded? This is a question that 
we, of course, cannot answer. We know that Skolem was 
interested in structures and not in axioms. As one exam-
ple, we know that he admired Cantor’s ordinals, not as a 
foundation, but as a new and highly interesting mathemati-
cal structure; see [17, p. 176]. It is possible that he would 
be equally fascinated by the “abstract shapes” of synthetic 
geometry, but that does not mean that he would necessarily 
subscribe to a HOTT foundation for mathematics.

Set theory and homotopy type theory (HOTT) are both 
universal axiomatic theories of mathematics—they have 
strength and beauty. But we note that the “grand view” of 
mathematics toward which these developments aim stands 
in stark contrast to Skolem’s skepticism and his insistence 
on the primacy of specific structures and doable algorithms.

Steps Toward a Possible “Skolem 
Foundation”
The words “foundation” (Begründung), and “foundational 
questions” (Grundlagenfragen) occur frequently in the titles 
of Skolem’s papers. But to what extent did Skolem have a 
complete and coherent view of the foundation of mathe-
matics? This was a question discussed at length in the con-
cluding section on Skolem in [17]. We have in the present 
survey emphasized that the young Skolem was a mathema-
tician interested in structures and algorithms, working on 
the algebra of logic and on combinatorics. We also observed 
that despite the fact that Skolem was an expert in using 
the axiomatic method, he did not believe in an axiomatic 
characterization of basic concepts such as numbers and 
sets. Concerning numbers, this was clearly expressed in 
the great 1923 paper on the “recursive mode of thought” 
(rekurrirende Denkweise). Concerning sets and the continu-
ous, we have his opinion from the popular 1932 lecture 
that “in the usual studies on continua” they are “never 
given by a set of specified formal construction principles.” 
Skolem the skeptic always knew what he did not like. But 
we would also like to know whether there is a positive side. 
Could there be a “Skolem philosophy” faithfully represent-
ing his views on the “real” nature of numbers and sets?

An answer to this question presupposes that we have 
a “correct” understanding of what knowledge is. At this 
point, we enter highly controversial ground. Our interest is 
knowledge and mathematics. Do we have to choose be-
tween such extremes as the formalism of Abraham Robin-
son and the platonism of Kurt Gödel concerning the exist-
ence of abstract objects? Or is the constructive approach of 
Brouwer preferable? We have shown elsewhere that there is 
a middle ground, and that is culture; see [17].

The reader will find an extended discussion of the 
cultural approach in the book Structures and Algorithms, 
Mathematics and the Nature of Knowledge [16]. Here we 
recall a few points from the analysis in the postscript to 
Chapter 9 of that book. We want to understand the general 

nature of knowledge, of what we “see” and what we “do.” 
Structures and algorithms, seen as abstract cultural ob-
jects, are essential for this understanding. Language and 
other formalisms, in particular the language of mathemat-
ics, serve as a link between the two. There is, however, no 
mathematics without numbers, either directly as objects 
or more generally as tools. Understanding knowledge thus 
means to know what numbers are.

Numbers are not objects in space and time; it thus seems 
necessary to acknowledge, as noted above, the existence of 
abstract objects in addition to physical objects and states 
of (individual) minds. The belief in abstract mathemati-
cal objects is widespread within the mathematical com-
munity; see the book Why Belief Matters: Reflections on 
the Nature of Science, by E. Brian Davies [6]. Davies is in 
no doubt about what mathematics is: “Mathematics is an 
aspect of human culture, just as are language, law, music, 
and architecture” [6, p. 101]. This is a strong and unquali-
fied expression of how mathematics is grounded in human 
culture, a view that was severely criticized by Husserl: 
there are mathematical objects, but they are neither social 
or cultural objects, because such objects are bound to time 
and place. In [16], we tried to strengthen the cultural view 
against this criticism with arguments drawn from both neu-
roscience and evolutionary theory. These arguments seem 
to be strengthened by recent results that show, contrary to 
the common belief that large evolutionary change requires 
thousands or millions of years, that the human genome 
can change significantly in as little as a generation; see the 
review in [27]. Thus, what is “seen” can leave an imprint on 
the human genome and hence become independent of time 
and place.

As mentioned in [16, p. 128], the approach in “A Second 
Philosophy of Arithmetic,” a recent paper by Penelope 
Maddy, “seems to have many points of contact with the 
views developed” in the postscript to [15]. “To summarize, 
then, the Second Philosopher concludes that much of the 
world displays a familiar abstract template—a domain, 
properties and relations, dependencies ….” [24, p. 225]. 
This view also expresses a widespread attitude in the math-
ematical community: first structure, then syntax and rules. 
A forceful expression of this view is found in Rawls’s report 
on the celebrated Sacks–Dreben slugfest in 1993. Both are 
well-known Harvard professors, Burton Dreben in philoso-
phy, Gerald Sacks in mathematics. Sacks argued that what 
is important for logic is structure, not syntax. “In learning 
mathematics, we become aware of and experience struc-
ture. This is what mathematical experience is ….” Sacks 
granted that syntax is simpler and that it therefore makes 
sense that we begin teaching logic with syntax; see [28, p. 
420].

How are abstract computational structures and physical 
calculations connected? Let us first make a few remarks on 
language and brain following [14]; for a current update, see 
the 2019 survey on Language and the Brain in the journal 
Science.14 We assume that what we “see”—objects and 
properties—have through an evolutionary process given 
rise to some rudimentary form of “universal” protosyntax 
(such as the decomposition of a whole message S into an NP 

14Science 366:6461 (2019), 48–66.
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+ VP structure), which in turn has left an imprint on the 
human genome. Thus “universal grammar” is grounded in 
culture. We would like to believe that the situation with 
numbers and calculations is similar to the language case. 
As noted above, the speed of evolutionary processes seems 
to be much faster than we originally believed—from mil-
lions of years, we now move to generations or at most some 
thousand years. This makes it possible that the abstraction 
of numbers as cultural objects from rudimentary compu-
tational practice, as described in [22], has in turn left an 
imprint on the human genome; see [16, chapter 9]. Thus, 
similarly to the case of language, we have a “universal 
arithmetic” grounded in culture. What is “imprinted” and 
what are the exact neural mechanisms are still unknown, 
but perhaps some clues can be found in the earlier models 
of Dehaene and Changeux [9]; see also [8] and [7]. If this is a 
correct line of reasoning, we can argue contra Husserl that 
numbers, invented by man, have become independent of 
time and place. It is of interest to note that the recent devel-
opment of the Gödel–Husserl view by Richard Tieszen—see 
in particular his 2015 paper [43]—seems to narrow the gap 
between numbers seen as abstract cultural objects and num-
bers seen as objects in the particular “World of Arithmetic” 
of phenomenology. But the gap remains.

We note that there also seems to be an implicit cultural 
foundation for Maddy’s “Second Philosophy.” The ap-
proach developed in Structures and Algorithms [16] is more 
directly cultural, and believing in numbers as (abstract) 
objects, we are probably “thin realists” in her view. The 
cultural approach needs numbers as objects. No one who 
has read C. P. Snow on Hardy’s visit to Ramanujan in hospi-
tal will doubt this:

Hardy had gone out to Putney by taxi, as usual his 
chosen method of conveyance. He went into the room 
where Ramanujan was lying. Hardy, always inept 
about introducing a conversation, said, probably 
without a greeting, and certainly as his first remark: 
“I thought the number of my taxi was 1729. It seemed 
to me a rather dull number.” To which Ramanujan 
replied: “No, Hardy! It is a very interesting number. 
It is the smallest number expressible as the sum of 
two cubes in two different ways” [41, foreword].

There are two lessons to be learned. First, numbers 
exist. Second, there is a difference between knowing a 
number and knowing what properties a number has. In this 
respect, abstract and physical objects are similar; “inven-
tion” and “discovery” are not necessarily contradictory. 
Numbers are cultural objects invented by man. But no man 
knows what properties there are to be discovered.

So far, we have presented the cultural approach to math-
ematics found in Structures and Algorithms. But could this 
approach also serve as a “Skolem foundation” for mathemat-
ics? Are Skolem’s views on the foundation of arithmetic from 
1923 and his remark “on the usual studies of continua” in 
the popular 1932 lecture sufficient to establish this claim? 
What we can say so far is that a cultural foundation is not 
inconsistent with his many remarks on foundational issues.

In our search for a Skolem foundation we leave for a mo-
ment the rarified world of mathematics pure and abstract 
and turn to mathematics in practice. A first observation 
is that mathematical models in science and technology are 
usually “small.” They can, if desired, be described inside 
a finite part of the countable hierarchy over some “basic 
structure.” And the basic elements for such structures are 
numbers, lines, and shapes, and even infinitesimals, all ex-
isting as cultural objects in the “mind of the species” (our 
common cultural space). And we seem to have great free-
dom of choice at every stage of any modeling process: all 
structures need not live in the same universe; the language 
and logic (be it classical, constructive, type-theoretic, etc.) 
used to describe the structures we see should be adapted 
to the problem at hand; algorithms, being equally an art 
form and a well-defined science, can come from anywhere. 
For a related view, see Hosack [20]. His deductive pluralism 
has many points of contact with the view expressed here, 
but our emphasis on the primacy of structures seems to 
be a better starting point for a philosophy of mathematical 
practice than his deductive pluralism.

At this point, it is appropriate to add some remarks on 
what is needed for “efficient” computing in the emerging age 
of “big data”; see the Tukey Centennial Lecture by D. Donoho 
from 2015 [10] and the ICM lecture on the Mathematics of 
Machine Learning by S. Arora from 2018 [2]. Traditionally, 
efficient computing has been restricted either to “small” dis-
crete systems (combinatorics) or continuous systems (stand-
ard numerical analysis); see Chapters 1 and 3 in Structures and 
Algorithms. New methods, usually referred to as “machine 
learning,” are now beginning to bridge the gap between the 
two cases; see [10]. It remains to be seen whether hyperfi-
nite combinatorics will find a place in this picture; see [42]. 
Finally, note that computing in practice pays little attention 
to the general theory of computability, except when one is 
trying to prove that no algorithm exists, such as in the case of 
Hilbert’s tenth problem; see the discussion in [13].

We need to add a few words on what we mean by “basic 
structure.” We insist that basic structure is not a set-the-
oretic construction, but more like a “type” in the HOTT 
approach, i.e., something “seen” and not constructed. In 
our view, basic structures are cultural objects, not models 
of some axiomatic system for set theory. There are indeed 
several critical observations to a possible set-theoretic 
approach to “basic structure.” First, and perhaps most 
important, any set-theoretic formalization preserves at 
most the proof structure, not what was “seen” in the basic 
structure; understanding the “true nature” of numbers and 
the geometry of abstract shapes is a key example of this 
crucial difference between “proofs” and “insights.” And 
of equal importance, internal problems with a set-theoretic 
coordinate structure for some basic geometric structure are 
not necessarily “problems” concerning the given “basic 
structure,” the continuum hypothesis being a notorious 
example. Finally, note that mathematical practice does not 
need a “total formalization,” except in the case in which 
one also wants to add a general computer proof assistant to 
one’s theory.
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It is also of some interest to observe that our theory of 
“small worlds” fits equally well the way physicists work 
and behave in their daily lives. The majority of this tribe 
live and experiment within many different “small worlds” 
without the need for any form of overarching unified 
theory; see, in particular, Chapter 4 of Structures and 
Algorithms. There are indeed some, Freeman Dyson is one 
example, who believe that there is no unified theory of 
quantum effects (points) and general relativity (geometry); 
see [11]. Thus, a theory of “small worlds” is emerging as a 
valid and well-argued approach to both mathematics and 
the natural sciences.

But would this also be a “Skolem philosophy” of math-
ematics? In order to answer this question, we need to recall 
the distinction we made in the introduction between a 
“philosophy of mathematics” and a “philosophy for math-
ematicians.” The former designates today an independent 
intellectual activity of great beauty and complexity. It 
is, however, neither a specialty inside mathematics nor a 
necessary foundation for doing mathematics. For the latter, 
a philosophy for mathematicians, we return to Skolem. His 
pre-1920 work experiences, his 1923 paper, and his 1932 
remarks seem to justify that a foundation based on a cul-
tural understanding of mathematical objects, together with 
an insistence on the primacy of structures and algorithms 
and a “small world” approach to mathematical modeling, is 
what is needed for the working mathematician.

Postscript: Jens Erik Fenstad passed away in April 2020, 
shortly before his 85th birthday, as an early victim of the 
coronavirus pandemic. He had worked extensively on this 
article in his final year, including several long discussions 
with me. After falling ill, Jens conveyed to his wife that he 
considered the article ready for publication and requested 
that I try to find a suitable venue for it. He would no doubt 
have been very pleased about its publication in the Math-
ematical Intelligencer. A short obituary (in Norwegian) can 
be found at https://​www.​mn.​uio.​no/​math/​om/​aktue​lt/​aktue​
lle-​saker/​2020/​jens-​erik-​fenst​ad.​html.

—Øystein Linnebo, Professor of Philosophy, IFIKK, Univer-
sity of Oslo
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