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Abstract
Multilevel Monte Carlo (MLMC) has become an important methodology in applied mathe-
matics for reducing the computational cost of weak approximations. For many problems, it is
well-known that strong pairwise coupling of numerical solutions in the multilevel hierarchy
is needed to obtain efficiency gains. In this work, we show that strong pairwise coupling
indeed is also important when MLMC is applied to stochastic partial differential equations
(SPDE) of reaction-diffusion type, as it can improve the rate of convergence and thus improve
tractability. For the MLMC method with strong pairwise coupling that was developed and
studied numerically on filtering problems in (Chernov in Num Math 147:71-125, 2021), we
prove that the rate of computational efficiency is higher than for existing methods. We also
provide numerical comparisons with alternative coupling ideas on linear and nonlinear SPDE
to illustrate the importance of this feature.
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1 Introduction

The efficiency of numerical methods is a very important topic for practitioners that has
lately seen a surge of interest in the field of uncertainty quantification (UQ) [40–42]. UQ
seeks to combine statistical and probabilistic techniques with traditional numerical schemes
to improve the modeling and the accuracy of estimates. Examples of applications include
climatemodeling, subsurfaceflow,medical imaging anddeep learning [1, 12, 37].Aparticular
focus has been given on the class of numericalmethods known asMonteCarlo (MC)methods,
which are used to solve problems incorporating elements of randomness or uncertainty [35,
39, 42], i.e., in stochastic computations. One methodology which has exhibited improved
efficiency and a high level of applicability, is multilevel Monte Carlo (MLMC).

MLMC is a numerical technique aimed at reducing the computational cost of the Monte
Carlo method. The methodology was first introduced by Heinrich [22] and extended and
popularized by various works on diffusion processes by Giles [14, 15]. The methodology of
MLMCcan be viewed as a variance-reduction technique. Since theseworks,MLMChas been
applied in numerous areas, including stochastic filtering [6, 13, 24, 26, 27], Markov chain
Monte Carlo (MCMC) [7, 10] and partial differential equations with random input arising in
UQ [2, 7, 19]. MLMC is based upon a given problem, such as estimating an expectation at
some terminal time, w.r.t. the law of a diffusion process, that requires a discretization. For
instance, in the diffusion case, this can be a time-discretization based on the Euler method.
One then decomposes an expectation w.r.t. a law associated to a very precise discretization
into a telescoping sum of differences of expectations associated to laws of increasingly
coarse discretizations. The objective is then to sample from coupled probability distributions
associated to consecutive discretized laws and to apply Monte Carlo at each summand of the
telescoping sum to achieve a variance reduction, relative to using Monte Carlo at the finest
discretization. The amount of discretization refers to the level, in the acronym MLMC.

Despite the substantial advancements made with MLMC, the number of applications
and research papers on applying the methodology to stochastic partial differential equations
(SPDE) [29] is relatively small. Such examples include finite-difference solvers with appli-
cations in mathematical finance [16], and finite element methods for parabolic SPDE [3, 5].
There are open questions on the efficiency and scope of MLMC for SPDE which we use as
motivation for this work: is it possible to improve the efficiency of MLMC through strong
pairwise coupling of numerical solutions of SPDE, and can that widen the scope of MLMC
on SPDE to problems in higher dimensions and with lower-regularity driving noise?

Our objective in this manuscript is to present a complexity study of an alternative way
to apply MLMC for SPDE, which can demonstrate computational gains. This approach is
based on the exponential Euler method [11, 23, 30, 36] and strong pairwise coupling of solu-
tion realizations on different levels. The strong pairwise coupling approach was introduced
and studied experimentally in the work on finite-dimensional Langevin SDE by Müller et
al. [38] and extended to filtering methods for (infinite-dimensional) SPDE by Chernov et
al. [8]. The coupling idea is based on the exponential Euler integrator [11, 23, 33, 36] for
time-discretization of reaction-diffusion type SDE/SPDE. For the finite-dimensional SDE
in [38], strong coupling is shown to produce constant-factor efficiency gains in numerical
experiments, whereas for the herein considered class of SPDE, we show that strong cou-
pling reduces the asymptotic rate of growth in the computational cost. This indicates that
strong coupling for MLMC can lead to more substantial asymptotic efficiency gains for
infinite-dimensional problems than for finite-dimensional ones.
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The main contribution of this work is to demonstrate the improvements of the discussed
coupling approach, for numerically solving SPDE. This is presented in the standard-format
cost-versus-error result for exponential EulerMLMC in Theorem 2. Specifically, our findings
suggest that in order to achieveO(ε2)mean squared error (MSE) in a standard setting,we have
to pay O(ε−2) in computational cost. This is a reduction in cost compared to other existing
methods, such as the Milstein MLMC method, for which the cost is O(ε−3), cf. Theorem 3
and [5], and it is, to the best of our knowledge, the first theoretical result on the performance
of the exponential Euler MLMC for any nonlinear stochastic PDE.We also verify these gains
numerically on two SPDE, one with a linear reaction term and one with a nonlinear one.

The outline of this paper is as follows. In Sect. 2 we describe our model problem, which
is a semilinear SPDE, and review fundamental properties of the MLMC method. Section3
describes our proposed coupling method for MLMC and two alternative methods. We also
summarize the theoretical properties of our main MLMC method in Theorem 2. Numerical
experiments on various SPDE are conducted in Sect. 4 to demonstrate the improvement with
the proposed coupling. Finally,we conclude our findings, and provide future areas of research,
in Sect. 5. Required model assumptions are provided in the Appendix.

2 BackgroundMaterial

In this section we present and review theMLMCmethod applied to numerical discretizations
of SPDEs. We first introduce the SPDE under consideration, and then review the approxi-
mation methods: a spectral Galerkin spatial discretization combined with either exponential
Euler or Milstein discretization in time.

2.1 Notation

Let T > 0 and let (Ω,F, P) be a complete probability space equipped with a filtration
Ft∈[0,T ]. H denotes a non-empty separable Hilbert space with inner product 〈·, ·〉, norm
‖ · ‖H = √〈·, ·〉 and orthogonal basis (en)∞n=1. L

2(Ω, H) denotes the associated Bochner–
Hilbert space, consisting of the set of strongly measurable maps f : Ω → H such that

‖ f ‖2L2(Ω,H)
:=
∫

Ω

‖ f (ω)‖2H dP(ω) < ∞

Let N := {1, 2, . . .}, and for every N ∈ N, we introduce the finite-dimensional subspace
HN := span{en | n = 1, . . . , N } ⊂ H and the associated orthogonal projection operator
PNv := ∑N

n=1〈v, en〉 en for v ∈ H . For a (normally implicitly given) set B and mappings
f , g : B → [0,∞), the notation f � g implies there exists aC > 0 such that f (x) ≤ Cg(x)
for all x ∈ B, and the notation f � g means that both f � g and g � f hold. For
multivariate positive-valued functions f (x, y) and g(x, y) for which it holds for someC > 0
that f (x, y) ≤ Cg(x, y) for all (x, y) ∈ Domain( f ) = Domain(g), we write f �(x,y) g
if confusion is possible. And, similarly as above, f �(x,y) g means that f �(x,y) g and
g �(x,y) f . Form, n ∈ Zwithm ≤ n, we introduce the integer interval [[m, n]] := [m, n]∩Z,
and for x ∈ R we define �x
 := min{n ∈ Z | n ≥ x}.
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2.2 Problem Setup

We consider a semilinear stochastic partial differential equation [9] of the form

dUt = (AUt + f (Ut )) dt + dWt for t ∈ [0, T ],
U0 = u0,

(2.1)

where A : D(A) → H is a linear operator, u0 ∈ H is a random-valued initial condition,
f : H → H is a reaction term that in general is nonlinear, and Wt is a Q-Wiener process,
cf. (A.2). A number of further assumptions are imposed for the problem, which we have
deferred to Appendix 1. Suffice it to say here that we do assume that the linear operator is
negative-definite and spectrally decomposable in the considered basis:

Av = −
∞∑
k=1

λk〈ek, v〉ek (2.2)

and that the Q-Wiener process takes the form

W (t, x) =
∞∑
n=1

√
qnenw

n
t ,

where (wn
t )

∞
n=1 is a sequence of independent scalar-valued Wiener processes. We note that

the eigenbasis of the operator A, (en)∞n=1, also appears in the representation of the Q-Wiener
process. The strictly positive sequence (λn)

∞
n=1 and the non-negative sequence (qn)∞n=1 are

further described in Appendix 1.
The mild solution to Eq. (2.1) is an H -valued predictable process (Ut )t∈[0,T ] satisfying

P

(
ω ∈ Ω

∣∣∣ Ut = eAtu0 +
∫ t

0
eA(t−s) f (Us)ds +

∫ t

0
eA(t−s)dWs ∀t ∈ [0, T ]

)
= 1.

(2.3)
The general form of (2.1) encapsulates numerous SPDE in practice. We will introduce and
numerically study some of these in Sect. 4.

2.3 Numerical Methods

Numerical approximations of SPDE have traditionally been computed through the use of
finite difference methods and finite element methods (FEM) [29, 35, 43]. For the relevance
of this work, we will utilize and discuss an alternative class of Galerkin-based solvers. To
motivate such an alternative class, we review some of these techniques below.

2.3.1 Continuous-time Spectral Galerkin Methods

For N ∈ N, consider the Galerkin problem of solving the SPDE (2.1) on the subspace HN :

dUN
t = (ANU

N
t + fN (UN

t )
)
dt + dW N

t ,

UN
0 = uN

0 := PNu0,
(2.4)

where AN := PN A, fN (v) := PN ( f (v)) and WN
t := PNWt = ∑N

n=1
√
qn en wn

t . It is
well-known [32] that (2.4) has a unique mild solution given by

UN
t = eAN tuN

0 +
∫ t

0
eAN (t−s) fN (UN

s ) ds +
∫ t

0
eAN (t−s) dW N

s .
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We next discuss two time-discretizations of spectral Galerkin methods.

2.3.2 The Exponential Euler Method

For a given J ∈ N, let �t = T
J and let (t j )Jj=0 be the nodes of a uniformly spaced mesh

of [0, T ], so that t j = j �t for j ∈ [[0, J ]]. Then, for given N ∈ N, the exponential Euler
approximations (V N ,J

j )Jj=0 ⊂ HN of (UN
t j )Jj=0 are defined by

V N ,J
0 := uN

0 ,

V N ,J
j+1 = eAN�t V N ,J

j + A−1
N (eAN�t − I ) fN (V N ,J

j )

+
∫ t j+1

t j
eAN (t j+1−s) dW N

s ∀ j ∈ [[0, J − 1]],
(2.5)

where A−1
N : HN → HN denotes the inverse operator of AN . Defining for n ∈ [[1, N ]] the

components of V N ,J
j and fN (·) by V N ,J

j,n := 〈V N ,J
j , en〉,

fN ,n(·) := 〈 f (·), en〉, respectively, and recalling the spectral decomposition of the oper-
ator A, we arrive at the recursive relation

V N ,J
j+1,n = e−λn�t V N ,J

j,n + 1 − e−λn�t

λn
fN ,n(V

N ,J
j ) + R j,n, (2.6)

where

R j,n := √
qn

∫ t j+1

t j
e−λn(t j+1−s)dwn

t
d= N

(
0,

qn (1 − e−2λn�t )

2λn

)
.

We recall from (2.2) that−λn denotes the n-th eigenvalue of the operator A, see alsoAssump-
tion 2 in Appendix 1 for further details. Convergence properties of the exponential Euler
scheme has been studied in [30], where they demonstrate strong convergence and highlight
an improvement in the order of convergence in time against traditional numerical schemes:

Proposition 1 (Jentzen and Kloeden [30]) Let all assumptions in Appendix 1 hold for some
φ ∈ (0, 1) relating to the regularity of the Q-Wiener process. Then

max
j∈[[0,J ]] E

[
‖Ut j − V N ,J

j ‖2H
]

�(N ,J ) λ
−2φ
N +

(
log2(J )

J

)2
, (2.7)

where U is the mild solution (2.3) of (2.1), and (V N ,J
j )Jj=0 denotes the exponential Euler

approximation of the mild solution, cf. (2.5).

We note that the first term on the RHS of (2.7) is related to the discretization in space and
the second term is related to the discretization in time.

The performance of a numerical method will be measured by the computational cost
required to reach a mean squared error (MSE)O(ε2). Computational cost refers to the num-
ber of computational operations, where we count each addition, subtraction, multiplication,
division, and each draw of a Gaussian random variable as one computational operation. It
follows from this definition that if f = 0 in the SPDE (2.1), then no evaluation of the reac-
tion term is needed and the computational cost of computing the final-time solution V N ,J

J
is O(J N ), as each time iteration of (2.5) consists of O(N ) computational operations. When
f �= 0, however, the cost becomes a more complicated expression in general, and we make
the following assumption to simplify matters:
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Assumption 1 (Cost of evaluating fN ) For any N ∈ N and V N ∈ HN , the cost of of
evaluating fN (V N ) is O(N log2(N )).

When Assumption 1 holds, each evaluation of fN (V J ,N
j ) costs O(N log2(N )), and this

accumulates to

Cost(V N ,J
J ) = O(J (N + Cost( fN )

) ) = O(J N log2(N )) (2.8)

for the final-time solution.

Remark 1 In the numerical Scheme (2.5) used in Proposition 1 and in Assumption 1 it is
tacitly assumed that the nonlinear reaction term fN (V N ,J

j ) can be evaluated exactly for

any N ∈ N and V N ,J ∈ HN . For nonlinear reaction terms f , this may however not be
possible in practice. In computations, we will employ the fast Fourier transform (FFT) to
approximate fN (V N ,J

j ) on a uniform mesh with N degrees of freedom in space for each
iteration of (2.5), where we refer to [8, Section 6.3.1] and [35] for further details on this
procedure. The approximation of fN by FFT may introduce so-called aliasing errors in the
numerical solution, cf. [31, page 334]. Aliasing errors are not covered in the mathematical
analysis of this paper, but we will include the cost of using FFT in the computational cost of
all numerical methods studied.

Remark 2 Disregarding aliasing errors, Assumption 1 holds when computing fN (V N ) by
FFT for Nemytskii-operators f (U )(x) = g(U (x)) where the mapping g : R → R addition-
ally satisfies that one evaluation costs O(1). Then

fN (V N ) = FFT
(
g(V N (x = 0)), g(V N (x = 1/N )), . . . , g(V N (x = (N − 1)/N ))

)

where the right-hand side costs O(N log2(N )) to evaluate.

2.3.3 The Milstein Method

TheMilstein method has been extended from SDE to different forms of parabolic SPDEwith
multiplicative noise in [4, 31]. We will here consider the version developed in [31], since its
scheme is easy to express in our problem setting, and it is also easy to extend to an MLMC
method. Using the previously introduced discretization parameters in space and time and
recalling that the operators A and Q share the same eigenspace, the Milstein Scheme [31,
equation (28)] takes the form

V N ,J
0 := uN

0

V N ,J
j+1 = eAN�t

(
V N ,J
j + �t fN (V N ,J

j ) + WN (t j+1) − WN (t j )
)

for j ∈ [[0, J − 1]]. On the component level, the scheme is given by

V N ,J
j+1,n = e−λn�t

(
V N ,J
j,n + �t fN ,n(V

N ,J
j ) + √

qn
(
wn(t j+1) − wn(t j )

))
(2.9)

for n ∈ [[1, N ]] and j ∈ [[0, J − 1]].
We next present strong convergence rates for theMilstein scheme restricted to the additive-

noise setting. For extensions to various multiplicative-noise settings, see [4, 31].
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Proposition 2 (Jentzen and Röckner [31]) Let Assumption 6 in Appendix 1 be fulfilled for
some values of φ ∈ (1/2, 1), κ ∈ [0, φ) and θ ∈ [max(κ, φ − 1/2), φ), where φ is the noise
parameter introduced in Assumption 3. Then it holds that

E

[∥∥∥UT − V N ,J
J

∥∥∥2
H

]
�(N ,J ) λ−2θ

N + J−2min(2(θ−κ),θ),

where Ut denotes the mild solution to the SPDE (2.1) and (V N ,J
j )Jj=0 denotes the Milstein

approximation to the mild solution, cf. (2.9).

Proof (Connecting the result to the literature) Remark 7 inAppendix 1 associates our parame-
ters (φ, κ, θ)with corresponding ones in [31, Assumptions 1-4]. In our additive-noise setting
with the operators A and Q having the same eigenspace, Proposition 2 follows from [31,
Theorem 1].

Even when disregarding the differences in the regularity assumptions, a comparison of
the convergence rates for the exponential Euler and Milstein method is not straightforward
since the rates for exponential Euler only depend on the single parameter φ, while the rates
of Milstein depend on two additional parameters, κ and θ . To simplify the comparison we
impose additional constraints on the relationship between the parameters φ, κ and θ :

Corollary 1 For some value of φ ∈ (1/2, 1), let Assumption 6 in Appendix 1 be fulfilled for
some κ ∈ [0, φ/2) and all θ ∈ [max(κ, φ − 1/2), φ). Then for any sufficiently small fixed
δ > 0, it holds that

E

[∥∥∥UT − V N ,J
J

∥∥∥2
H

]
�(N ,J ) λ

−2φ+δ
N + J−2φ+δ.

Proof For any sufficiently small δ > 0, Assumption 6 holds for some κ < φ/2 − δ/4 and
θδ := φ − δ/2. Noting that

min(2(θδ − κ), θδ) = θδ = φ − δ/2,

the result follows from Proposition 2.

For a fixed value of φ ∈ (1/2, 1), the additional constraints imposed on κ and θ in Corol-
lary 1 are likely to present the Milstein method in a good light, as they produce the highest
possible convergence rates attainable from Proposition 2. Comparing the convergence of
exponential Euler in Proposition 1 with Milstein in Corollary 1, the methods have essentially
the same rate in space, but exponential Euler has a higher rate in time. Note further that the
rates only apply to Milstein when φ > 1/2, while they apply to exponential Euler method for
any φ ∈ (0, 1). But one should also keep in mind that the Milstein method applies to a wider
range of reaction terms f than exponential Euler, since Assumption 6 is more relaxed than
Assumption 4. When comparable, the lower convergence rate for Milstein leads to a poorer
performance for the Milstein MLMC method than the exponential Euler MLMC method in
low-regularity settings, when φ < 3/4, cf. Theorems 2 and 3. See also Sect. 4 for numerical
evidence that exponential Euler outperforms Milstein when φ ≈ 1/2.

2.4 Themultilevel Monte Carlo Method

The expectation of an H -valued random variable U is often approximated by the standard
Monte Carlo estimator

EM [U ] := 1

M

M∑
m=1

U (m),
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where the samples U (1),U (2), . . . ,U (M) ∼ PU are independently drawn random variables
and EM [U ] consequently denotes the sample average estimator using M i.i.d. draws of U .
When it is computationally costly to draw samples ofU , variance-reduction techniques may
improve the efficiency through reducing the statistical error of the estimator. The multilevel
Monte Carlo (MLMC)method is an extension of standardMonte Carlo that draws pairwisely
coupled random variables {(U �−1,C ,U �,F )}L�=0, where U

�−1,C denotes the coarse random
variable on resolution level �, andU �,F the fine random variable on level �. Pairwise coupling
of (U �−1,C ,U �,F )(ω) means that U �−1,C (ω) and U �,F (ω) are generated using the same
driving noise Wt (ω) (to be elaborated on in the next section). We further impose that

U−1,C := 0 ∈ H and E

[
U �,C

]
= E

[
U �,F

]
∀� ∈ N0, (2.10)

so that the weak approximation on resolution level L ∈ N can be represented as a telescoping
sum of expectations:

E [U ] ≈ E

[
UL,F

]
(2.10)=

L∑
�=0

E

[
U �,F −U �−1,C

]
. (2.11)

By approximating each of the L+1 expectations in the telescoping sum by a sample average,
we obtain the MLMC estimator:

EML [U ] :=
L∑

�=0

EM�

[
U �,F −U �−1,C

]

=
M0∑
m=1

U 0,F,(m)

M0
+

L∑
�=1

M�∑
m=1

U �,F,(m) −U �−1,C,(m)

M�

.

(2.12)

Here, (U �−1,C,(m),U �,F,(m)) denotes the P(U �−1,C ,U �,F )-distributed m-th sample on level �,
and all samples on all resolution levels are independent, meaning that all random variables
in the sequence {(U �−1,C,(m),U �,F,(m))}�,m are independent. A near-optimal calibration of
the parameters L ∈ N and (M�)

L
�=0 ⊂ N is obtained through minimizing the mean squared

error for a given computational cost, cf. [14] and Theorem 1. The MLMC estimator achieves
variance reduction over standard Monte Carlo when the coupled random variables U �−1,C

and U �,F are sufficiently correlated, cf. Condition (i i) in Theorem 1 below.
One way to assess the performance of Monte Carlo methods is through the MSE. The

following theorem describes the cost versus error of the MLMC methodology for H -valued
random variables:

Theorem 1 Assume that the telescoping-sum properties (2.10) hold and that there exists
positive constants α, β, γ such that α ≥ min(β,γ )

2 and

(i)
∥∥E [U �,F −U

]∥∥
H � 2−α �,

(ii) V� := E

[∥∥U �,F −U �−1,C
∥∥2
H

]
� 2−β �,

(iii) C� := Cost(U �−1,C ,U �,F ) � 2γ �.

Then for any ε ∈ (0, 1) and L := �log2(1/ε)/α
, there exists a sequence (M�)
L
�=0 ⊂ N

such that
MSE = E

[∥∥EML [U ] − E [U ]
∥∥2
H

]
� ε2,
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and

Cost(MLMC) :=
L∑

�=0

M� C� �

⎧⎪⎨
⎪⎩

ε−2, if β > γ,

ε−2(log ε)2, if β = γ,

ε−2− (γ−β)
α , if β < γ.

(2.13)

The proof of this result is a straightforward extension of the original theorem presented by
Giles [14] for weak approximations of stochastic differential equations.

Proof Let

M� :=
⎡
⎢⎢⎢ε−2

√
V�

C�

L∑
j=0

√
VjC j

⎤
⎥⎥⎥ � ∈ [[0, L]], (2.14)

where V0 := E
[‖U 0‖2H

]
. By the telescoping-sum property

E[EML[U ]] =
L∑

�=0

E

[
U �,F −U �−1,C

]
(2.10)= E

[
UL,F

]
,

the representation (2.12) and the independence of the samples
{(U �−1,C,(m),U �,F,(m))}�,m , we obtain that

E

[∥∥EML[U ] − E[U ]∥∥2H
]

= ‖E [U ] − E

[
UL
]
‖2H + E

[∥∥∥EML[U ] − E[UL ]
∥∥∥2
H

]

� 2−2αL + E

⎡
⎣
∥∥∥∥∥

M0∑
m=1

U 0,F,(m) − E[U 0]
M0

∥∥∥∥∥
2⎤
⎦

+ E

⎡
⎢⎣
∥∥∥∥∥∥

L∑
�=1

M�∑
m=1

U �,F,(m) −U �−1,C,(m) − E[U �,F −U �−1,C ]
M�

∥∥∥∥∥∥
2
⎤
⎥⎦

�
L∑

�=0

V�

M�

+ 2−2αL � ε2.

By assumptions (i i) and (i i i), we obtain that

L∑
�=0

C� M�

(2.14)≤
L∑

�=0

C�

⎛
⎝ε−2

√
V�

C�

L∑
j=0

√
VjC j + 1

⎞
⎠

� ε−2

⎛
⎝ L∑

j=0

√
VjC j

⎞
⎠

2

+ CL︸︷︷︸
�2γ L

� ε−2

⎛
⎝ L∑

j=0

√
VjC j

⎞
⎠

2

+ ε−γ /α

�

⎧⎪⎨
⎪⎩

ε−2 if β > γ

L2ε−2 + ε−2 if β = γ

ε−2− (γ−β)
α + ε−γ /α if β < γ.
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For the last inequality, the assumption α ≥ min(β, γ )/2 implies that that γ /α ≤ 2 when
β ≥ γ and β/α ≤ 2 when β ≤ γ (so that 2 + (γ − β)/α ≥ γ /α), and inequality (2.13)
follows.

Remark 3 The theorem also applies in settings where one replaces V� in Theorem 1 (ii)

by Ṽ� := E

[∥∥U �,F −U �−1,C − E
[
U �,F −U �−1,C

]∥∥2
H

]
, and for some problems this may

improve the rate β > 0. Practically, however, there may be little to gain by replacing V�

by Ṽ� as weak approximations of U �,F −U �−1,C can be much more intractable than strong
approximations, cf. [34].

3 Multilevel Monte Carlo Methods for SPDE

In this section we describe two MLMC methods that are based on extending the two numer-
ical schemes in Sect. 2.3 to the MLMC setting. To better illustrate the importance of strong
coupling and the loss of accuracy due to damping, we also propose a third MLMC method
which is an extension of a modified form of the exponential Euler method that only is expo-
nential in the drift-term. We will employ the following notation for the multilevel hierarchy
of discretized solutions: On level � ≥ 0, let N� � N0 2ν� for given N0 ∈ N and ν > 0 denote
a sequence of spatial resolutions, and let J� := J0 2� for a given J0 ∈ N denote a sequence
of time resolutions. In a notation that suppresses details on the pairwise coupling, we let
U �,F

j := V N�,J�
j denote the fine numerical solution of a given spectral Galerkin method on

level � at time t�j := j �t� for j ∈ [[0, J�]], computed on the subspace HN� using the time

step �t� := T
J�
. And U �−1,C

j := V N�−1,J�−1
j denotes the coupled coarse numerical solution

on level � at time t�−1
j := j �t�−1 for j ∈ [[0, J�−1]] computed on the subspace HN�−1 with

time step �t�−1 := T
J�−1

.
To discuss the quality of a pairwise coupling, let us first introduce some terminology.

When a coupling satisfies

E

[
U �,F

j

]
= E

[
U �,C

j

]
∀ j ∈ [[0, J�]]

for all � ≥ 0, we say that the coupling is weakly correct, and when it additionally satisfies

U �,F
j (ω) = U �,C

j (ω) ∀(ω, j) ∈ Ω × [[0, J�]]
for all � ≥ 0, we say that it is a pathwise correct coupling. From the construction of the
multilevel estimator in Sect. 2, we see that weakly correct coupling is needed to obtain
the crucial telescoping sum in the MLMC estimator, cf. (2.10) and (2.11), and that weakly
correct coupling thus ensures consistency for theMLMCestimator. Pathwise correct coupling
is on the other hand not necessary to obtain consistency, and there are many examples of
performant MLMC methods that only are weakly correct, cf. [17, 25]. Pathwise correct
coupling is however often an easy way to ensure the needed weakly correct coupling.

To achieve high performance, the pairwise coupling must be weakly correct and produce
a high convergence rate β for the strong error, cf. Theorem 1. We will refer to a coupling
that achieves a high rate β in comparison to alternative approaches as a strong coupling. To
be more precise for the particular SPDE considered in this work, we introduce the notion of
strong diffusion coupling:
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Definition 1 (Strong diffusion coupling (SDC))Consider aweakly correct coupling sequence
of spectral-Galerkin numerical solutions of the

{(U �−1,C ,U �,F )}�≥0 of the SPDE (2.1) with no reaction term, f = 0 (the stochastic
heat equation). Recall further that a coupled pair of solutions is defined on time meshes of
different resolutions:

U �−1,C
j = U �−1,C ( j�t�−1) ∈ HN�−1 for j ∈ [[0, J�−1]]

and

U �,F
j = U �,F ( j�t�) ∈ HN� for j ∈ [[0, J�]],

with �t�−1 = 2�t�. We say that the coupling is a strong diffusion coupling if it holds for all
� ≥ 0 that

PN�−1U
�,F
2 j = U �−1,C

j ∀ j ∈ [[0, J�−1]].

For the stochastic heat equation, an SDC is thus an exact coupling of U �−1,C to U �,F

on the subspace HN�−1 . This is of course the strongest possible coupling one can achieve
(for the given problem), and we will see later that the exponential Euler MLMC method
indeed is the only among the three we consider whose coupling is SDC. Although our theory
and numerical experiments both indicate a connection between SDC and strong couplings
more generally when f is non-zero-valued, it is not clear how far this extends. To best of
our knowledge, it is an open problem to describe coupling strategies for H -valued stochastic
processes that are weakly correct and maximize the convergence rate of the strong error β.

We next extend the exponential Euler method and the Milstein method to the MLMC
setting.

3.1 Exponential Euler MLMCMethod

This MLMC method was first introduced and analyzed for the linear reaction-term setting
in [8, Section 5.4.1]. Since then the method has been applied to the SPDE (2.1) with linear
reaction term for problems arising inBayesian computation. These include stochastic filtering
[28] and Markov chain Monte Carlo [27], with an extension to multi-index Monte Carlo.

We consider the pairwisely coupled solutions (U �−1,C ,U �,F ) that both are solved by the
numerical Scheme (2.6) with the respective initial conditions

U �−1,C
0 = PN�−1u0 and U �,F

0 = PN�
u0.

For the fine solution, the n-th component of two iterations of the Scheme (2.6) at time
t�2 j = 2 j�t� takes the form

U �,F
2 j+1,n = e−λn�t�U �,F

2 j,n + 1 − e−λn�t�

λn
fN�,n(U

�,F
2 j ) + R�,F

2 j,n, (3.1)

and

U �,F
2 j+2,n = e−λn�t�U �,F

2 j+1,n + 1 − e−λn�t�

λn
fN�,n(U

�,F
2 j+1) + R�,F

2 j+1,n, (3.2)

for ( j, n) ∈ [[0, J�−1 − 1]] × [[1, N�]] and with

R�,F
k,n = √

qn

∫ t�k+1

t�k

e−λn(t�k+1−s) dwn
s

d= N

(
0, qn

1 − e−2λn�t�

2λn

)
(3.3)
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for (k, n) ∈ [[0, J� − 1]] × [[1, N�]].
The coupled coarse solution uses the time step �t�−1 = 2�t�, and one iteration at time

t�−1
j = j�t�−1 = 2 j�t� = t�2 j takes the form

U �−1,C
j+1,n = e−λn�t�−1U �−1,C

j,n + 1 − e−λn �t�−1

λn
fN�−1,n(U

�−1,C
j,n ) + R�−1,C

j,n , (3.4)

where

R�−1,C
j,n = √

qn

∫ t�−1
j+1

t�−1
j

e−λn(t
�−1
j+1−s)dwn

s .

The pairwise coupling U �−1,C
j+1,n ↔ U �,F

2 j+2,n is obtained through coupling the driving noise

R�−1,C
j,n ↔ (R�,F

2 j,n, R
�,F
2 j+1,n). By (3.3), we have that

R�−1,C
j,n = √

qn

∫ t�−1
j+1

t�−1
j

e−λn(t
�−1
j+1−s)dwn

s

= e−λn�t� √
qn

∫ t�2 j+1

t�2 j

e−λn(t�2 j+1−s)dwn
s + √

qn

∫ t�2 j+2

t�2 j+1

e−λn(t�2 j+2−s)dwn
s ,

which yields

R�−1,C
j,n = e−λn�t� R�,F

2 j,n + R�,F
2 j+1,n ∀ ( j, n) ∈ [[0, J� − 1]] × [[1, N�]]. (3.5)

To summarize, given the coupling U �−1,C
j,n ↔ U �,F

2 j,n at some time t�−1
j , the coupling at

the next time is obtained by generating the fine-solution noise (R�,F
2 j,n, R

�,F
2 j+1,n) and cou-

pling it to the coarse-solution noise by formula (3.5). The next-time solution U �−1,C
j+1,n is

computed by (3.4) with R�−1,C
j,n as input, and U �,F

2 j+2,n is computed by (3.1) and (3.2) with

(R�,F
2 j,n, R

�,F
2 j+1,n) as input.

Remark 4 We note from the above that

R�−1,C
j,n (ω) = √

qn

∫ t�−1
j+1

t�−1
j

e−λn(t
�−1
j+1−s)dwn

s (ω) = R�−1,F
j,n (ω),

and since U �−1,C and U �−1,F are solved using the same numerical scheme, the coupling is
pathwise correct. Let us further note that if f = 0, then the linearity of the problem and (3.5)
imply that the coupling is an SDC:

U �,F
2 j,n(ω) = U �−1,C

j,n (ω) ∀( j, n) ∈ [[0, J�−1]] × [[1, N�−1]]. (3.6)

This can be verified by induction: assume (3.6) holds for some j ∈ [[0, J�−1 − 1]] (it holds
for j = 0 by definition). And using the numerical schemes for the respective methods with
f = 0, we obtain that

U �,F
2 j+2,n

(3.2)= e−λn�t�U �,F
2 j+1,n + R�,F

2 j+1,n

(3.1)= e−λn2�t�U �,F
2 j,n + e−λn�t� R�,F

2 j,n + R�,F
2 j+1,n

(3.5)= e−λn�t�−1U �−1,C
j,n + R�−1,C

j,n

(3.4)= U �−1,C
j+1,n .
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Since the exponential Euler MLMC method is SDC, we expect it to perform very efficiently
when f = 0, and Theorem 2 shows that the coupling is strong also for more general reaction
terms.

For showcasing the importance of strong pairwise coupling, and as a transition between
exponential Euler MLMC and Milstein MLMC, we next consider a slightly altered form of
the exponential Euler method with explicit integration of the Itô integral.

3.2 Drift-exponential Euler MLMCMethod

We consider the drift-exponential Euler scheme

V N ,J
0 := uN

0 ,

V N ,J
j+1 = eAN�t V N ,J

j + A−1
N (eAN�t − I ) fN (V N ,J

j )

+ eAN�t(WN (t j+1) − WN (t j )
)) ∀ j ∈ [[0, J − 1]].

This is a mix of exponential Euler and Milstein, as the approximation of the drift terms agree
with the exponential Euler scheme and the approximation of the Itô integral agrees with the
Milstein scheme.

When extending this scheme to an MLMC method, a similar argument as in Sect. 3.1
yields that two iterations of the fine solution in the pairwise couple (U �−1,C ,U �,F ) takes the
form

U �,F
2 j+1,n = e−λn�t�U �,F

2 j,n + 1 − e−λn�t�

λn
fN�,n(U

�,F
2 j ) + R̃�,F

2 j,n, (3.7)

and

U �,F
2 j+2,n = e−λn�t�U �,F

2 j+1,n + 1 − e−λn�t�

λn
fN�,n(U

�,F
2 j+1) + R̃�,F

2 j+1,n, (3.8)

for ( j, n) ∈ [[0, J�−1 − 1]] × [[1, N�]] and with

R̃�,F
k,n = √

qn e
−λn�t�

(
wn(t�k+1) − wn(t�k )

)
(3.9)

for (k, n) ∈ [[0, J� − 1]] × [[1, N�]].
The coupled coarse solution takes the form

U �−1,C
j+1,n = e−λn�t�−1U �−1,C

j,n + 1 − e−λn �t�−1

λn
fN�−1,n(U

�−1,C
j,n ) + R̃�−1,C

j,n , (3.10)

where

R̃�−1,C
j,n = √

qne
−λn�t�−1

(
wn(t�−1

j+1) − wn(t�−1
j )

)
.

Recalling that t�−1
j = j�t�−1 = 2 j�t� = t�2 j , we obtain the pairwise coupling ofU

�−1,C
j+1,n ↔

U �,F
2 j+2,n through coupling the driving noise:

R̃�−1,C
j,n = √

qne
−2λn�t�

(
wn(t�2 j+2) − wn(t�2 j )

) = e−λn�t�
(
R̃�,F
2 j,n + R̃�,F

2 j+1,n

)
.

Since R̃�−1,C
j,n (ω) = R̃�−1,F

j,n (ω) andU �−1,C andU �−1,F are solved using the same numerical
method, it follows that that the drift-exponential Euler MLMC method also is pathwisely
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correctly coupled. However, it is not SDC, since when f = 0 we obtain by (3.7) and (3.8)
that for n ∈ [[1, N�−1]],

U �,F
2,n = e−λn2�t�U �,F

0,n + R̃�,F
1,n + e−λn�t� R̃�,F

0,n

= e−λn�t�−1U �,C
0,n + R̃�−1,C

0,n︸ ︷︷ ︸
=U �−1,C

2,n

+(1 − e−λn�t� )R̃�,F
1,n �= U �−1,C

2,n .

The term (1−e−λn�t� )R̃�,F
1,n is an error in the coupling that is introduced by explicit integration

of the Itô integral. This leads to an artificial smoothing of the numerical solution, as is
illustrated by the numerical examples in Sect. 4.

3.3 Milstein MLMCMethod

We consider the pairwise coupling of the coarse and fine Milstein solutions on level � with
respective initial conditions

U �−1,C
0 = PN�−1u0 and U �,F

0 = PN�
u0.

Two iterations of the fine solution takes the form

U �,F
2 j+1,n = e−λn�t�

(
U �,F
2 j,n + �t� fN�,n(U

�,F
2 j,n) + √

qn
(
wn(t�2 j+1) − wn(t�2 j )

))

= e−λn�t�
(
U �,F
2 j,n + �t� fN�,n(U

�,F
2 j,n)

)
+ R̂�,F

2 j,n

and

U �,F
2 j+2,n = e−λn�t�

(
U �,F
2 j+1,n + �t� fN�,n(U

�,F
2 j+1,n) + √

qn
(
wn(t�2 j+2) − wn(t�2 j+1)

))

= e−λn�t�
(
U �,F
2 j+1,n + �t� fN�,n(U

�,F
2 j+1,n)

)
+ R̂�,F

2 j+1,n

for ( j, n) ∈ [[0, J�−1 − 1]] × [[1, N�]] with
R̂�,F
k,n := √

qne
−λn�t�

(
wn(t�k+1) − wn(t�k )

)
, (k, n) ∈ [[0, J� − 1]] × [[1, N�]].

One iteration of the coarse solution takes the form

U �−1,C
j+1,n = e−λn�t�−1

(
U �−1,C

j,n + �t�−1 fN�−1,n(U
�−1,C
j,n )

)

+ √
qne

−λn�t�−1
(
wn(t�−1

j+1) − wn(t�−1
j )

)
︸ ︷︷ ︸

=:R̂�−1,C
j,n

for ( j, n) ∈ [[0, J�−1 − 1]] × [[1, N�−1]].
And we obtain the same coupling as for the drift-exponential Euler method:

R̂�−1,C
j,n = √

qne
−λn2�t�

(
wn(t�2 j+2) − wn(t�2 j )

)
= e−λn�t�

(
R̂�,F
2 j,n + R̂�,F

2 j+1,n

)
.

By a similar argument as for the previousMLMCmethod, this is a pathwise correct coupling,
but it is not SDC.

In summary, we have presented three different MLMC methods where only the coupling
for the exponential EulerMLMCmethod is SDC. This particularlymeans that the exponential
Euler MLMCmethod outperforms the other methods when f = 0, and later comparisons of
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the strong convergence rate β for the two methods in Theorems 2 and 3 and in the numerical
experiments show that the outperformance is broader.

3.4 MLMC for SPDE

In this section, we present cost versus error results for the exponential Euler- and Milstein
MLMC methods.

We recall that the computational cost of one simulation of a numerical method is defined
by the computational effort needed, cf. (2.8), and that under Assumption 1, it holds for all
three spectral Galerkin methods we consider that

Cost(U �,F (T )) = Cost(U �,F
J�

) = Cosst(V N�,J�
J�

) � J�N� log2(N�),

and

Cost(U �−1,C (T ),U �,F (T )) � Cost(U �−1,C
J�−1

) + Cost(U �,F
J�

) � J�N� log2(N�). (3.11)

Wewill considerweak approximations ofBanach-space-valued quantities of interest (QoI)
of the following form:

Definition 2 (Admissible QoI) Let K be a Banach space equipped with the norm ‖ · ‖K and
let ϕ : H → K be a strongly measurable and uniformly Lipschitz continuous QoI. We say
that such a QoI is admissible if the cost of evaluating the mapping satisfies that

sup
v∈HN

Cost(ϕ(v)) � N .

We are ready to state the main result of this work.

Theorem 2 ([Exponential Euler MLMC) Consider the SPDE (2.1) for a linear operator A
with λn � n2 and let ϕ : H → K be an admissible QoI, in the sense of Definition 2. If
all assumptions in Appendix 1 hold for some φ ∈ (0, 1) and Assumption 1 holds, then the
pathwise correctly coupled exponential Euler MLMC method with

J� = 2� J0 and N� � N02
�/(2φ) (3.12)

satisfies

(i)
∥∥E[ϕ(U �,F (T , ·)) − ϕ(U (T , ·))]∥∥K � (� + 1)2−�.

(ii) V� := E

[
‖ϕ(U �,F (T , ·)) − ϕ(U �−1,C (T , ·))‖2K

]
� (� + 1)2 2−2�.

(iii) C� := Cost
(
ϕ(U �−1,C (T )), ϕ(U �,F (T ))

)
�(� + 1)2(1+1/(2φ))�.

And for any sufficiently small ε > 0 and L := �log2
(
log2(1/ε)/ε

)
, there exists a sequence
{M�(ε)}L�=0 ⊂ N such that

MSE = E
[∥∥EML[ϕ(U (T , ·))] − E[ϕ(U (T , ·))]∥∥2K

]
� ε2, (3.13)

and

Cost(MLMC) :=
L∑

�=0

M�C�

�

⎧⎪⎨
⎪⎩

ε−2 if φ ∈ (1/2, 1)

ε−2
(
log2(1/ε)

)5
if φ = 1/2

ε−1−1/(2φ)
(
log2(1/ε)

)2+1/(2φ)
if φ ∈ (0, 1/2).

(3.14)
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Proof Let us show that the K -valued random variables ϕ(U �,F (T , ·)) and ϕ(U �,C (T , ·)) are
well-defined. The Lipschitz continuity of the mapping ϕ implies that

‖ϕ(U �,F (T , ·))‖K ≤ ‖ϕ(U �,F (T , ·)) − ϕ(0)‖K + ‖ϕ(0)‖K
≤ Cϕ‖U �,F (T , ·)‖H + ‖ϕ(0)‖K ,

whereCϕ > 0 denotes theLipschitz constant forϕ. It follows thatϕ(U �,F (T , ·)) ∈ L2(Ω, K )

for all � ≥ 0, and we similarly also have that ϕ(U �,C (T , ·)) ∈ L2(Ω, K ).
We note that the numerical resolution sequences are set according to (3.12) to balance

the error from space- and time-discretization in Proposition 1. A pair of correctly coupled
solutions U �,F,(m) and U �−1,C,(m) can be viewed as exponential Euler solutions using the
same driving Q−Wiener process W (m) on levels � and � − 1, respectively. Consequently,

E

[
‖ϕ(U �,F (T , ·)) − ϕ(U �−1,C (T , ·))‖2K

]

≤ C2
ϕE

[
‖U �,F (T , ·) −U �−1,C (T , ·)‖2H

]

≤ 2C2
ϕE

[
‖U �,F (T , ·) −U (T , ·)‖2H + ‖U (T , ·) −U �−1,C (T , ·)‖2H

]

= 2C2
ϕE

[
‖V N�,J�

J�
−U (T , ·)‖2H + ‖U (T , ·) − V N�−1,J�−1

J�−1
‖2H
]

(2.7)
� λ

−2φ
N�

+
(
log2(J�)

J�

)2

� N−2φ
� +

(
� + 1

)2
2−2�

� (� + 1)2 2−2�,

where we used Lipschitz continuity for the first inequality. This verifies rate (ii). Since
{ϕ(U �,F (T , ·))}� is a Cauchy sequence in L2(Ω, K ) with limit ϕ(U (T , ·)), we have that

E

[
ϕ(U (T , ·)) − ϕ(U �,F (T , ·))

]
= E

⎡
⎣ ∞∑

j=�

ϕ(U j+1,F (T , ·)) − ϕ(U j,F (T , ·))
⎤
⎦

= E

⎡
⎣ ∞∑

j=�

ϕ(U j+1,F (T , ·)) − ϕ(U j,C (T , ·))
⎤
⎦ .

In the last equality we used that the coupling is pathwise correct: U j,F (T , ·) = U j,C (T , ·),
cf. Remark 4. Rate (i) follows from

∥∥E[ϕ(U (T , ·)) − ϕ(U �,F (T , ·))]∥∥K ≤
∞∑
j=�

E
[‖ϕ(U j+1,F (T , ·)) − ϕ(U j,C (T , ·))‖K

]

(i i)
�

∞∑
j=�+1

( j + 1)2− j

� (� + 1)2−�.
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Rate (iii) follows by (3.11) and Definition 2. Introducing the following number-of-samples-
per-level sequence

M� =
⎡
⎢⎢⎢ε−2

√
V�

C�

L∑
j=0

√
VjC j

⎤
⎥⎥⎥ � ∈ [[0, L]], (3.15)

and noting that L = �log2(log2(1/ε)/ε)
 � log2(1/ε), we obtain (3.13) by a similar argu-
ment as in the proof of Theorem 1:

E
[∥∥EML[ϕ(U (T , ·))] − E[ϕ(U (T , ·))]∥∥2K

]

= E

[ ∥∥∥EML[ϕ(U (T , ·))] − E[ϕ(UL,F (T , ·))]
∥∥∥2
K

]

+ ‖E[ϕ(U (T , ·))] − ϕ(UL,F (T , ·))]‖2K

�
L∑

�=0

V�

M�

+ L22−2L

� ε2
max(

∑L
�=0

√
V�C�, 1)

max(
∑L

j=0

√
VjC j , 1)

+ L2 ε2

(log(ε))2

� ε2.

For the computational cost, we have that

L∑
�=0

C� M� � ε−2

⎛
⎝ L∑

j=0

√
VjC j

⎞
⎠

2

+ CL

� ε−2

⎛
⎝ L∑

j=0

√
VjC j

⎞
⎠

2

+
(

ε

log2(1/ε)

)−(1+1/(2φ))

,

and (3.14) follows from using VjC j � ( j + 1)3 2 j (1/(2φ)−1) when bounding the squared
sum from above.

Remark 5 A general framework for (MLMC) methods for reaction-diffusion type SPDE
in the setting of φ ≥ 1/2 and for numerical methods with a strong convergence rate 1/2
was first developed in [5]. When φ = 1/2 and γ = 2, the MSE O(ε2−δ) was achieved
at the computational cost O(ε−3) for that method in [5, Theorem 4.4] compared to a cost
O(ε−2) for our exponential Euler MLMC method. This is however not a fair performance
comparison, since [5] was developed for more general SPDE with multiplicative noise and
for which the operators A and Q need not share eigenbasis, while our method is tailored to
the additive-noise setting with A and Q sharing eigenbasis, cf. Appendix 1.

We state a similar cost-versus-error result for the MLMCMilstein method with pathwise
correctly pairwise coupling.

Theorem 3 (Milstein MLMC) Consider the SPDE (2.1) for a linear operator A with λn �

n2, let the assumptions in Corollary 1 hold for some φ ∈ (1/2, 1) and let Assumption 1
hold. Let ϕ : H → K be an admissible QoI, in the sense of Definition 2. Then the pathwise
correctly coupled Milstein MLMC method with

J� = 2� J0 and N� � N02
�/2, (3.16)
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satisfies for any fixed δ > 0 that

(i)
∥∥E[ϕ(U �,F (T , ·)) − ϕ(U (T , ·))]∥∥H � 2−(φ−δ/2)�.

(ii) V� := E

[
‖ϕ(U �,F (T , ·)) − ϕ(U �−1,C (T , ·))‖2H

]
� 2−(2φ−δ)�.

(iii) C� := Cost
(
ϕ(U �−1,C (T )), ϕ(U �,F (T ))

)
� (� + 1)23�/2.

And for any sufficiently small fixed δ > 0 and any sufficiently small ε > 0, there exist an
L(ε) ∈ N and a sequence {M�(ε)}L�=0 ⊂ N such that

MSE = E
[∥∥EML[ϕ(U (T , ·))] − E[ϕ(U (T , ·))]∥∥2H

]
� ε2, (3.17)

at the cost

Cost(MLMC) :=
L∑

�=0

M�C� �

⎧⎪⎨
⎪⎩

ε−2 if φ ∈ (3/4, 1)

ε−2(1+δ) if φ = 3/4

ε−3(1+δ)/(2φ) if φ ∈ (1/2, 3/4).

(3.18)

Proof We set the numerical resolution sequences by (3.16) to balance the error from space-
and time-discretization in Corollary 1, and, since the Milstein MLMC method is pathwise
correctly coupled, the rates (i), (ii) and (iii) can be verified as in the proof of Theorem 2.

To prove the error and cost results, we relate the rates in (i), (ii) and (iii) to those in
Theorem 1: for any δ > 0, it holds that

α = φ − δ/2, β = 2φ − δ and γ = 3/2 + δ (3.19)

For the case φ ∈ (3/4, 1) it holds for sufficiently small δ > 0 that β > γ , and the
results (3.17) and (3.18) follow from Theorem 1.

For the case φ ∈ (1/2, 3/4], we again apply Theorem 1 to our rates (α, β, γ ) in (3.19) to
conclude that (3.17) is fulfilled at the cost

Cost(MLMC) � ε−2− (γ−β)
α = ε

− 3/2+δ
φ−δ/2 ,

and taking δ > 0 sufficiently small, it holds that

3/2 + δ

φ − δ/2
≤ 3(1 + δ)

2φ
.

Comparing Theorems 2 with 3, we expect exponential Euler MLMC to asymptotically
outperform Milstein MLMC when the colored noise has low regularity, meaning when φ <

3/4.

4 Numerical Examples

In this section, we numerically test the exponential Euler MLMC method against the drift-
exponential- andMilsteinMLMCmethods.We study two reaction-diffusion SPDE, one with
a linear reaction termand onewith a trigonometric one. To showcase the superior performance
of exponential Euler in settings with low-regularity colored noise, we consider one setting
with φ ≈ 1/2 (this is a low-regularity setting for the Milstein method) and we numerically
confirm the theoretical result that the exponential Euler MLMC and the Milstein MLMC
perform similarly when φ ≈ 3/4, cf. Theorems 2 and 3.
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For our numerical experiments we consider the general form of semilinear SPDE

dUt = (AUt + f (Ut )) dt + dWt , t ∈ [0, T ],
with initial triangular-wave initial condition

u0(x) =
{
2x, x ∈ [0, 1

2

]
,

2(1 − x), x ∈ ( 12 , 1
]
.

Furthermore we specify our space H = L2(0, 1) with Fourier basis functions en(x) =
exp(i2nπx) for n ∈ Z, and the final time is set to T = 1/2. We consider a linear operator
A : D(A) → H defined as

A = −
∑
n∈Z

λn 〈·, en〉 en,

with eigenvalues (λn)n∈Z, given as

λn =
{
1 if n = 0,
(2nπ)2

5 if n ∈ Z \ {0}.
We note that the triangular-wave initial condition satisfies the following regularity condition:
u0 ∈ H3/4−δ for any δ > 0.

For f : H → H , we consider the two different reaction terms which are presented in
Table 1. Both belong to the class of Nemytskii operators, cf. [35].

The driving noise dW is a Q−Wiener process (A.2) with

qn := 1

4
λ−2b
n for n ∈ Z,

for two different values of b: the low-regularity setting b = 1/4, and the smoother setting
b = 1/2. In connection with Assumption 3, we note that

∑
n∈Z

(λn)
2φ−1qn = 1

4
+ 2π2

5

∞∑
n=1

n4(φ−b)−2 < ∞ ⇐⇒ φ < 1/4 + b.

It consequently holds that thatφ = (1/4+b)−δ for any δ > 0, and for simplicity,wewill refer
to the parameter values for φ as φ(b = 1/4) = 1/2− and φ(b = 1/2) = 3/2−, respectively.
When Theorems 2 and 3 apply, we expect exponential Euler MLMC to outperform Milstein
MLMC when φ < 3/4, and that the methods perform similarly when φ > 3/4.

Note however that some of our numerical studies are purely experimental, as neither of
the theorems apply to all problem settings we consider. Theorem 2 only applies to the linear
reaction term, because the trigonometric reaction term has no Fréchet derivative that belongs
to L(H), and this violates Assumption 4. We do however believe the regularity assumptions
in Proposition 1 can be relaxed so that it also applies to the trigonometric reaction term, but,
to the best of our knowledge, it is an open problem to prove this.

Table 1 Different reaction terms
f (U ) : H → H tested in the
numerical experiments

f (U )(x) Reaction term

U (x) Linear

2(sin(2πU (x)) + cos(2πU (x))) Trigonometric
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For theMilsteinmethod, on the other hand,Assumption6does holdwheneverφ > 1/2 and
κ > 1/4, with Fréchet derivatives f ′(·) = 4π(cos(2π ·)− sin(2π ·)) and f ′′(·) = −8π2 f (·).
(This can be verified using the definition of Fréchet derivatives and that L∞(0, 1) ⊂ Hκ .)
But Theorem 3 only applies when φ > 1/2.

4.1 Numerical Estimates of the Convergence Rateˇ

Numerical estimates of the root mean squared error (RMSE) convergence rates in time and
space for all three methods are presented in Figs. 1 and 2. The RMSE in time is approximated
by √

EM [‖V N∗,2J (T , ·) − V N∗,J (T , ·)‖2H ],
where J is varied and N∗ = 1024 is fixed, and using M = 10000 independent samples of the
random variable in the Monte Carlo estimator. For the exponential Euler method we observe
the rate 1 and for the other methods, we observe the rate φ(b) = 1/4 + b.

The RMSE in space is approximated by√
EM [‖V 2N ,J∗(T , ·) − V N ,J∗(T , ·)‖2H ],

where N is varied and J∗ = 218 is fixed, and using M = 250 independent samples. This
error describes the RMSE convergence rate in N , which we observe to be 2φ = 1/2 + 2b
for all methods.

Fig. 1 RMSE in time and space for the SPDE with the linear reaction term. The top row provides rates for
low-regularity setting with b = 1/4 and the bottom row provides rates for b = 1/2
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Since the β in Theorem 1 represents the MSE, the numerical experiments indicate that
β = 2min(1, 2φ) = 2 for exponential Euler MLMC and β = 2φ(b) = 1/2 + 2b for the
other two methods. We will further set α = β/2 as the weak rate when implementing all
MLMC methods.

4.2 Method Parameters

All three methods are implemented using Theorem 1 with the numerical estimates of the
rates α and β, rather than by using the rather than using the slightly more conservative rate
for β in Theorem 2 (ii).

4.2.1 Exponential Euler MLMCMethod

We use the estimated rates α = 1 and β = 2 and balance error contributions in time and
space by setting

J� = 2�+2 and N� = 2 × �2�/(2φ)+1
 and .

and L = �log2(1/ε)/α
 = �log2(1/ε)
. We set C� := (� + 1)2γ � with γ = 1 + 1/(2φ),
which one may verify is consistent with C� � J�N� log2(N�), and we set V� := 2−2� to

Fig. 2 RMSE in time and space for the SPDE with the trigonometric reaction term. The top row provides the
rates for low-regularity setting with b = 1/4 and the bottom row provides the rates for b = 1/2
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(a) (b)

Fig. 3 Comparison of the couplings at the finest level (blue) and the coarsest level (red) for the SPDE with
linear reaction term. The spatial resolution is fixed to N = 28 in all simulations and the resolution in time
(J , J/2) is given by J = 26, 28, and 210 from top to bottom row (Color figure online)

determine the sequence {M�}�, in compliance with formula (3.15), by

M�(ε) =
⎧⎨
⎩
20
⌈
2ε−2

√
V�

C�

∑L
j=0

√
VjC j

⌉
if � = 0

5
⌈
2ε−2

√
V�

C�

∑L
j=0

√
VjC j

⌉
otherwise.

(4.1)

4.2.2 Drift-Exponential Euler MLMC andMilstein MLMC

The numerically observed convergence rates for both of these methods are β = 2φ and
α = φ. For both methods, we set

J� = 2�+2, N� = 2 × �2�/2+1
, and L =
⌈
log2(1/ε)

φ

⌉
− 2,

C� := (�+1)23�/2 and V� := 2−2φ�, we and determine the sequence {M�}� by formula (4.1).

4.3 Linear Reaction Term

We first consider the SPDE with f (U ) = U . Figure3 presents pairwisely coupled real-
izations for progressively finer resolution in time for the settings b = 1/4 and b = 1/2. In
the low regularity setting b = 1/4, we clearly observe that the exponential Euler method has
far less smoothing of the solutions and achieves a stronger coupling than the other methods.
The difference between the methods becomes less visible in the smoother setting b = 1/2.

Figure 4 provides the approximation ofE[U (T , ·)]byone simulation of each of theMLMC
methods for different input ε = 2−� for � = 4, 5, . . . , 9.Weobserve that allmethods converge
to the mean with approximately the same rate for both values of b.

Figure 5 presents the MLMC approximation error versus tolerance and the computational
cost versus tolerance for different input tolerances ε for one simulation. The approximation
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Fig. 4 Approximation of EML[U (T , x)] for the SPDE with linear reaction term for different values of ε =
2−4, 2−5, . . . , 2−9 in full colored lines (blue, orange, green, red, purple, brown) and the pseudo-reference
solution E[U (T , x)] (dashed line). From left to right, exponential Euler, drift-exponential Euler, and Milstein.
Top row is for the low-regularity setting b = 1/4 and bottom row is for b = 1/2 (Color figure online)

Fig. 5 Top row: convergence and computational cost plots for the SPDEwith f (U ) = U and b = 1/4. Bottom
row: similar plots for the setting with b = 1/2 (Color figure online)
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error

‖EML[U (T , ·)](ω; ε) − E [U (T , ·)] ‖2H
is computed for one simulation of the MLMC estimator for each input of ε, where the the
pseudo-reference solution E [U (T , ·)] is obtained by solving the PDE

dUN
t = (ANU

N
t + fN (UN ))dt, UN

0 = PNu0

with the exponential Euler method using the resolutions N = 213 and J = 218. Let us also
recall that the computational cost of the MLMC methods is defined by

∑L
�=0 C�M�.

For φ = 1/2−, we observe that exponential Euler MLMC method has achieves the error
O(ε2) at the cost O((log2(ε))

2ε−2) while the other methods achieves similar accuracy at
considerably higher cost. For φ = 3/4− all three methods achieves an error O(ε2) at a
comparable computational cost. The observations are consistent with theory.

4.4 Trigonometric Reaction Term

We next consider the SPDE with

f (U )(x) = 2
(
sin(2πU (x)) + cos(2πU (x))

)
.

The approximation of E[U (T , ·)] by the MLMCmethods for different inputs ε = 2−� for
� = 4, 5, . . . , 9 is presented in Figs. 6 and 7 shows the MLMC approximation error versus
computational cost and computational cost versus tolerance for different input tolerances ε.

Fig. 6 Approximation of EML[U (T , x)] for the SPDEwith trigonometric reaction term for different values of
ε = 2−4, 2−5, . . . , 2−9 in full colored lines (blue, orange, green, red, purple, brown) and the pseudo-reference
solution E[U (T , x)] (dashed line). From left to right, exponential Euler, drift-exponential Euler, and Milstein.
Top row is for the low-regularity setting b = 1/4 and bottom row is for b = 1/2 (Color figure online)
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Fig. 7 Top row: convergence and computational cost plots for the SPDE with f (U ) = 2(sin(2πU ) +
cos(2πU )) and b = 1/4. Bottom row: similar plots for the setting with b = 1/2

For each value of b, the pseudo-reference solution used for evaluating the approximation error
is computed by the exponential Euler MLMC method EML[U (T , ·)](ω, ε) ≈ E[U (T , ·)]
with the overkilled parameter value ε = 2−11. This an expensive computation using the
following number of samples per level when b = 1/4:

(M0, M1, M2, . . . , M10, M11) = (4907168680, 216868270, 44268050, . . . , 355, 85),

with N� = J� = 2�+2.We observe once again that exponential EulerMLMCoutperforms the
other methods in the low-regularity setting b = 1/4 and that all methods perform similarly
when b = 1/2.

5 Conclusion

Our objective in this work was to show both theoretically and experimentally that coupling
approaches that exploit more information than only the driving noise Wt , such as the expo-
nential Euler MLMC method, can result in strong coupling and improve the efficiency of
weak approximations for SPDE. Our motivation in doing so, was based on the lack of liter-
ature on strong coupling for MLMC methods solving SPDE. In particular, we have derived
explicit convergence rates, related to the decay of the mean squared error-to-cost rate, for the
exponential Euler MLMC method and the Milstein MLMC method, cf. Theorems 2 and 3.
The convergence rates for exponential Euler MLMC method is an improvement over exist-
ing MLMC methods for reaction-diffusion SPDE with additive noise. We also presented
numerical experiments highlighting our derived rates and demonstrating the efficiency gains
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of the exponential Euler MLMC method over alternative ones. This was tested numerically
on SPDE with linear and nonlinear reaction terms.

There are many possible extensions of this work. It would be interesting to understand
whether strong couplings also can improve the efficiency of MLMC for other numerical
solvers for SPDE, such as finite differencemethods and FEM [2, 5]. This indeed is a challeng-
ing problem, due to the seemingly limitless possibilities of couplings for infinite-dimensional
problems. Another direction is to develop a multi-index Monte Carlo method [18, 28] based
on the pathwise correctly coupled exponential Euler method. This has the potential of further
improving tractability in higher-dimensional physical space and low-regularity settings.
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AModel Assumptions for the Exponential Euler Method

Our assumptions will be similar to those in the seminal work [30] on exponential Euler
integrators.

Assumption 2 There exists a strictly increasing sequence (λn)
∞
n=1 of positive real numbers

such that Aen = −λn en for n ∈ N and the linear operator A : D(A) → H is given as

Av = −
∞∑
n=1

λn〈en, v〉 en ∀ v ∈ D(A)

where

D(A) =
{

v ∈ H
∣∣∣

∞∑
n=1

λ2n |〈v, en〉|2 < ∞
}

.

We define the family of interpolation spaces of the operator A for r ≥ 0 as follows

Hr := D((−A)r ) =
{

v ∈ H
∣∣∣

∞∑
n=1

λ2rn |〈v, en〉|2 < ∞
}

. (A.1)
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The Q-Wiener process is defined by

Wt :=
∞∑
n=1

√
qnenw

n
t , (A.2)

where (wn
t )

∞
n=1 is a sequence of independent scalar-valued Wiener processes, and the non-

negative sequence (qn)n ⊂ [0,∞) satisfies the following:

Assumption 3 There exists a constant φ ∈ (0, 1) such that

∞∑
n=1

(λn)
2φ−1qn < ∞.

Let L(Hr1 , Hr2) denote the set of bounded linear operators mapping from Hr1 to Hr2 , and
the let L(Hr ) := L(Hr , Hr ).

Assumption 4 The reaction term f : H → H is twice continuously Fréchet differentiable,
where its derivatives satisfy the following

‖ f ′(x) − f ′(y)‖L(H) ≤ C‖x − y‖H , ‖(−A)−r f ′(x)(−A)rv‖H ≤ C‖v‖H ,

for all x, y ∈ H , v ∈ D((−A)φ), and r = {0, 1/2, 1}, and
‖A−1 f ′′(x)(v,w)‖H ≤ C‖(−A)−1/2v‖H‖(−A)−1/2w‖H ,

for all v,w ∈ H , where C > 0 is a positive constant.

Assumption 5 The initial value u0 is a D((−A)φ)-valued random variable, that satisfies

E[‖(−A)φu0‖4H ] < ∞,

for the constant φ > 0 in Assumption 3.

BModel Assumptions for theMilstein Method

In this section, we present the assumptions for the Milstein method [31] in the setting that
is relevant for this paper: when the operators A and Q share eigenspace and for reaction-
diffusion SPDE (2.1) with additive noise.

Assumption 6 (Drift coefficient and noise assumption) Let Assumption 2 hold and let
Assumption 3 hold for some φ ∈ (1/2, 1). Let κ ∈ [0, φ) and let f : Hκ → H be a
twice continuously Fréchet differentiable mapping with

sup
x∈Hκ

max(‖ f ′(x)‖L(H), ‖ f ′′(x)‖L(Hκ×Hκ ,H)) < ∞.

And for a value θ ∈ [max(κ, φ − 1/2), φ), it holds that

E
[‖(−A)θu0‖H

]
< ∞.

Remark 6 Since Hκ is dense in H , the operator f ′(x) ∈ L(Hκ , H) has a unique extension
f̃ ′(x) ∈ L(H , H) and one should interpret the operator norm on the extended domain as
follows:

‖ f ′(x)‖L(H) := sup
v∈Hκ\{0}

‖ f ′(x)(v)‖H
‖v‖H = ‖ f̃ ′(x)‖L(H).
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Remark 7 The cryptic parameter θ is an adaptation of [31,Assumption 3] to the additive-noise
setting with B(u) = I and U0 = Q1/2(H). And, working with Hilbert–Schmidt operator
norms, [31, equation (21)] is then fulfilled by

‖B(u)‖HS(U0,Hφ−1/2) = ‖B(u)Q1/2‖HS(H ,Hφ−1/2) :=
∞∑
n=1

qnλ
2φ̄−1
n < ∞.

What we represent by κ , φ − 1/2 and θ is respectively denoted by β, δ and γ in [31]. [31,
equation (22)] is trivially fulfilled since B ′(u) = 0 and choosing, in the paper’s notation,
α = 0 and ϑ = max(1/2 − φ, 1/4), it follows that [31, equation (23)] holds for any
θ ∈ [max(κ, φ − 1/2), φ), since

‖(−A)−ϑ B(u)Q−α‖HS(U0,H) = ‖(−A)−max(1/2−φ,1/4)Q1/2‖HS(H ,H)

≤
∞∑
n=1

λ2φ−1
n qn

Assumpt . 3
< ∞.

[31, equation (23)] does indeed not depend on the value θ in the additive-noise setting, but
θ does enter as a constraint on the regularity of the initial data in [31, Assumption 4]. Our
lower bound φ > 1/2 is due to the constraint δ > 0 in [31, Assumption 3] and our upper
bound κ < φ is due to the constraint β < δ + 1/2 in [31, Assumption 3].
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