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Abstract: Natural disasters, including droughts and floods, have caused huge losses to mankind.
Hydrological modelling is an indispensable tool for obtaining a better understanding of hydrological
processes. The DEM-based routing methods, which are widely used in the distributed hydrological
models, are sensitive to both the DEM resolution and the computational cell size. Too little work
has been devoted to the joint effects of DEM resolution and computational cell size on the routing
methods. This study aims to study the joint effects of those two factors on discharge simulation
performance with two representative routing methods. The selected methods are the improved ag-
gregated network-response function routing method (I-NRF) and the Liner-reservoir-routing method
(LRR). Those two routing methods are combined with two runoff generation models to simulate the
discharge. The discharge simulation performance is evaluated under the cross combination of four
DEM resolutions (i.e., 90 m, 250 m, 500 m, and 1000 m) and fifty-six computational cell sizes (ranging
from 5 arc-min to 60 arc-min). Eleven years of hydroclimatic data from the Jianxi basin (2000–2010)
and the Shizhenjie basin (1983–1993) in China are used. The results show that the effects of the DEM
resolution and the computational cell size are different on the I-NRF method and the LRR method.
The computational cell size has nearly no influence on the performance of the I-NRF methods, while
the DEM resolution does. On the contrary, the LRR discharge simulation performance decreases
with oscillating values as the computational cell size increases, but is hardly affected by the DEM
resolution. Furthermore, the joint effects of the DEM resolution and the computational cell size can
be ignored for both routing methods. The results of this study will help to establish the appropriate
DEM resolution, computational cell size, and routing method when researchers build hydrological
models to predict future disasters.

Keywords: DEM resolution; computational cell size; I-NRF routing method; LRR routing method;
discharge simulation

1. Introduction

Natural disasters bring huge losses to society, ecology, and the economy. Drought
and flood events are common natural disasters and have led to significant troubles for
humans [1–3]. Drought events can cause extreme shortages of domestic water, irrigation
water and food, such as the drought that occurred in Southwest China in 2009 [4] and
the droughts in eastern Africa in 2011 and 2017 [5], while extreme flood events have also
caused casualties and property losses [6–9].

The development of science and technology [10–15] provides the possibility for disas-
ter prevention and control. Studying the natural laws of the basin [16,17] and predicting
the hydrometeorological elements of the basin are important measures to prevent natural
disasters. Hydrological models play an important role in hydrological simulation and
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hydrological prediction. The accuracy of the hydrological simulation is affected by many
factors, such as the routing methods [18], the accuracy of the input data [19,20], the model
parameters [21] and so on [22]. The routing method, which transfers the simulated runoff
over the basin into the downstream river discharge in hydrological modelling, plays a vital
role in drought and flood prediction. A robust routing method contributes to achieve better
discharge simulation results. The fluvial hydraulics model is a satisfactory method to estab-
lish the hydraulic hazard maps [23,24]. It simulates detailed flood dynamics at high spatial
and temporal resolutions [24]. However, a lot of measured data, including hydrological
data and hydraulic data, are needed in hydraulics simulation. Besides, highly sophisticated
hydraulic simulations are time consuming [20], especially for large-scale watersheds. In
the absence of detailed measured data or for basins of large areas, the DEM-based routing
methods, or intelligent algorithms [25], can be alternatives. Conceptual models require
less computational effort but they do not take into account the flood inundation and wave
diffusion. The growing number of easily accessible gridded meteorological datasets and
global Digital Elevation Model (DEM) datasets have facilitated the rapid development and
widespread use of DEM-based routing methods. DEM-based routing methods are widely
used in flood routing [23,26–28]. Samela et al. [23] proposed a DEM-based approach for
extracting the flood-prone areas in the ungauged basin. It behaves well in a subcatchment
of the Bulbula River in Africa. Li et al. [29] applied two DEM-based routing methods to
the distributed Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The discharge
simulation performances with the DEM-based routing methods were better than that of the
elevation band-based HBV model.

There are two types of DEM-based routing methods: Cell-to-Cell and Source-to-
Sink [18,30]. Both are widely used in distributed hydrological models. The Cell-to-Cell
method, which is based on both a channel storage equation and a water balance equation,
determines the outflow of each cell, using the known inflow and storage at each time step.
The outflow of one cell is the inflow of the adjacent downstream cell. These calculations
are performed iteratively at each cell until the outflow of the basin is obtained. The main
advantage of Cell-to-Cell routing methods is that the discharge is determined at every
cell and the runoff is fully distributed over the basin. Cell-to-Cell routing methods are
often fairly simple to implement and understand, although the computational demand
increases rapidly with the increase in the number of cells [31–34]. The Source-to-Sink
routing method determines how the runoff in each cell independently contributes to the
total discharge at the outlet of the basin. Most Source-to-Sink routing methods are more
computationally efficient than the Cell-to-Cell methods and are more widely applicable in
various disciplines [30,35–37].

Generally, runoff is routed through flow nets identified from DEM data, in both
the Cell-to-Cell and Source-to-Sink routing methods. Due to computational limitations
in large-scale (i.e., large watershed, national or global) hydrological models, routing is
often performed with computational cell resolutions that are coarser than those found in
the DEMs.

In practice, the computational cell size may vary widely within a given model, de-
pending on the spatial domain of the model works; while relatively coarser computational
cell sizes may be used for simulating continental-scale basins, finer computational cell sizes
are expected to improve the accuracy of the calibrated parameters and the model results.
In regional and global hydrological modelling, the computational cell size usually ranges
from 0.1◦ × 0.1◦ (about 10 km ×10 km) to 5◦× 5◦ (about 500 km × 500 km). For example,
Harrigan et al. [38] simulated discharge at 1801 discharge stations, using the LISFLOOD
routing model [39] and the ERA5 global runoff reanalysis dataset, which has a resolution of
0.1◦ × 0.1◦ [40]. Xie et al. [41] conducted a regional parameter estimation in China, using the
Variable Infiltration Capacity (VIC) model at a resolution of 50 km × 50 km. Niu et al. [42]
simulated the discharge based on the flow net at a resolution of 1◦× 1◦ in 16 catchments
in the Pearl River Basin in China. Just as there are various computational cell size op-
tions, the typical DEM resolutions in hydrological modelling range from 15 m × 15 m to
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1 km × 1 km. While finer DEM data resolutions are desirable, in practice, the preferred
DEM resolution must be balanced against the available computational resources, especially
in large-scale hydrological simulation. If the computational costs are too high, or if there is
a lack of high-resolution DEM data for a given study area, it may make more sense to use a
coarser DEM dataset.

The DEM dataset resolution and the computational cell size affect the routing method
performance at the same time, and the user must carefully select the appropriate compu-
tational cell size and DEM resolution for their specific situation. While numerous studies
have examined how the two conditions affect the modelling results separately [43,44], there
is very little information about how they jointly affect the routing method performance.
Using two different computational cell sizes of 25 km and 350 km, Arora et al. [45] explored
how the computational cell size influenced the routing method results (one is for coupled
general circulation models at the global scale and the other is for hydrological applica-
tions at basin scale). Overall, coarser computational cells resulted in poorer performances.
Furthermore, Gong et al. [18] found that, in a water and snow balance modelling system
(WASMOD) model of the Dongjiang Basin, the aggregated network-response function
(NRF) performed similarly over a variety of computational cell sizes; conversely, the perfor-
mance of the linear-reservoir-routing method (LRR) decreased with a zigzag pattern as the
computational cell size increased. The DEM resolution influenced numerous hydrological
parameters, such as the slope, the routing length, the flow net, and, consequently, the
simulated discharge [46]. Using DEM resolutions of 100 m, 200 m, and 300 m, Du et al. [44]
investigated the effects of the DEM resolution on the simulated storm runoff in a time
variant spatially distributed travel time method, which showed that the performance was
poor when the DEM resolution was larger than 200 m. Gong et al. [35] demonstrated
that the simulated discharge, using the NRF routing method, was relatively insensitive
to the DEM resolution differences between the Hydroshed (about 90 m) and Hydro1k
(1000 m) datasets. Jeon et al. [47] studied the discharge results and processing time in
the Heukcheon Basin for various DEM resolutions (15 m, 30 m, 70 m, 100 m, 200 m, and
300 m) and found that the largest acceptable DEM resolution was 100 m for a basin with
a drainage area of ~300 km2. Chaubey et al. [48] found that to get less than 10% bias in
Soil and Water Assessment Tool (SWAT) output for total phosphorus (TP), discharge, and
NO3-N simulation, the adequate DEM resolution should be between 100 m and 200 m.
While these studies provide valuable information about the effects of the computational
cell size and the DEM dataset resolution individually, the joint effect of DEM resolution
and computational cell size on modelling performance is yet to be studied.

Finer DEM resolution and finer computational cell size can better capture the basin
microtopographic features in hydrological modelling. However, it also means larger
computational complexity and longer calculation time for distributed hydrological models.
Thus, researchers must find a balance between modelling efficiency/accuracy and the
required DEM resolution and the computational cell size. On the premise of ensuring the
results of the runoff simulation, the shortest possible runoff simulation time and the smallest
workload are pursued. This study, therefore, aims to investigate how DEM resolution
and computational cell size jointly affect the performance of routing methods in terms
of discharge simulation in distributed hydrological models. Two representative routing
methods are selected in this study, including the Liner-reservoir-routing method (LRR),
and the improved aggregated network-response function routing method (I-NRF) [49].
LRR is a typical Cell-to-Cell routing method and I-NRF is a typical Source-to-Sink routing
method. Two rainy basins with different areas are used in this study. This study can help
researchers to choose the most appropriate modelling approach based on the existing data
and computation services when predicting drought and flood disasters. In the rest of
this paper, Section 2 describes the study area and the data, Section 3 presents a detailed
description of the methods and Section 4 presents our results. Then, the conclusions are
drawn in Section 5.
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2. Study Area and Data

Two basins with different areas are selected to test the generality of the results, namely
the Jianxi basin and Shizhenjie basin in southeast China. The Jianxi basin is approxi-
mately twice the size of the Shizhenjie basin. The Jianxi River basin (26◦31′–28◦31′ N,
117◦31′–119◦00′ W) is the largest tributary in the upper reaches of the Minjiang River, with
a drainage area of 14,898 km2 above the Qilijie station. Qilijie station is located at the outlet
of Jianxi River. The elevation of the Jianxi basin ranges from 166 m to 2008 m (a.m.s.l.).
The Lean River has a drainage area of 8294 km2 above Shizhenjie station. Shizhenjie
station is located downstream of Lean River. In the Shizhenjie basin (28◦56′–29◦58′ N,
116◦94′–118◦23′ W), the elevation ranges from 10 m to 1605 m (a.m.s.l.). The drainage net
and terrain of our two study areas are shown in Figure 1.

Figure 1. The drainage net and terrain of the study basins. The small figure in the bottom right corner
shows the location of the study basins within China.

DEM datasets with four different resolutions are used: 1000 m [50], 500 m (http://
www.resdc.cn/data.aspx?DATAID=123 (accessed on 14 January 2022)), 250 m (http://www.
resdc.cn/data.aspx?DATAID=123 (accessed on 14 January 2022)), and 90 m (http://www.
resdc.cn/data.aspx?DATAID=123 (accessed on 14 January 2022)). The daily precipitation,
air temperature, and relative humidity data are provided by the National Meteorological

http://www.resdc.cn/data.aspx?DATAID=123
http://www.resdc.cn/data.aspx?DATAID=123
http://www.resdc.cn/data.aspx?DATAID=123
http://www.resdc.cn/data.aspx?DATAID=123
http://www.resdc.cn/data.aspx?DATAID=123
http://www.resdc.cn/data.aspx?DATAID=123
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Information Centre in China. The daily discharge data of the Qilijie hydrological station in
the Jianxi basin from 2000 to 2010 was obtained from the Fujian Hydrology Bureau, and the
daily discharge data of the Shizhenjie hydrological station from 1983 to 1993 was provided
by the Bureau of Hydrology of the Changjiang Water Resources Commission.

The Long-Range Dependence of the hydroclimatic variables is important in hydro-
logical modelling [51]. Thus, the statistical characteristics of the daily precipitation, air
temperature, relative humidity and discharge for the tested period in the study area are
calculated and shown in Table 1. Four important statistical moments [51] are used in this
study: the mean, standard deviation, skewness coefficient and kurtosis coefficient. Figure 2
shows the change in the runoff coefficient in the tested period.

Table 1. The statistical characteristics of the hydroclimate data in the study area.

Mean Standard
Deviation

Skewness
Coefficient

Kurtosis
Coefficient

Jianxi
basin

discharge 463 m3/s 753.07 7.88 95.83
precipitation 1741 mm/year 10.55 4.05 25.20
air temperature 18 ◦C 7.66 −0.30 1.94
relative humidity 78 9.78 −0.22 2.84

Shizhenjie
basin

discharge 297 m3/s 515.53 5.40 43.77
precipitation 1868 mm/year 11.50 3.91 23.62
air temperature 17 ◦C 8.81 −0.13 1.79
relative humidity 79 10.06 −0.31 2.91

Figure 2. The change in the runoff coefficient of Jianxi basin (a) and Shizhenjie basin (b).

3. Methods
3.1. Routing Methods
3.1.1. The Improved Aggregated Network-Response Function Routing Method

I-NRF [49], the improved version of NRF, achieves accurate simulation of discharge
results in many basins. It is a typical Source-to-Sink routing method. The I-NRF routing
method relies on slope and routing length data extracted from the grids of the DEM dataset:

ti =


k
∑

i=1

li
v45·(tan(αi))

b αi > α0

k
∑

i=1

li
v45·(tan(α0))

b αi ≤ α0

(1)

where ti (minute) is the travel time between each grid and the outlet, k (-) is the total number
of grids on the flow path, αi(

◦) is the slope, li (m) is the routing length between each grid
and the downstream grid, and α0 (◦) is the slope threshold that prevents the occurrence of
an infinite ti parameter value. Parameter v45 (m/s) is the wave velocity in the grid with a
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slope of 45◦ and b (-) is a parameter that reflects how sensitive the wave velocity is to the
slope. These two routing parameters v45 and b both require special calibration.

3.1.2. Linear Reservoir Routing Method

Based on the characteristic river length theory, the linear reservoir routing (LRR)
method, which is a Cell-to-Cell routing method, is popular and reliable [18]. The LRR
algorithm is defined as:

Q2 =
0.5∆t

0.5∆t + Kl
(I2 + I1) +

−0.5∆t + Kl
0.5∆t + Kl

Q1 (2)

Kl =
l
v

(3)

where I1 (m3/s) and Q1 (m3/s) are the inflow and outflow at the start time, I2 (m3/s) and
Q2 (m3/s) are the inflow and outflow at the end time, and ∆t (s) is the calculation time.
Kl (s) is a constant that represents the time needed to travel through the characteristic river
length, l (m) is the length of the river section, and v (m/s) is the wave velocity of the flood.
Of these parameters, only v requires calibration.

The key routing parameters for the I-NRF and LRR routing methods are shown in
Table 2.

Table 2. Descriptions of routing parameters in the I-NRF routing method and LRR routing method.

Routing Method Parameters Explanation Prior Range for Calibration

I-NRF

v45 (m/s) the wave velocity of a
grid whose slope is 45◦ 4, 5, 6, 7, 8, 9, 10

The combination of all values
generate 49 routing

parameter-value setsb (-)
power exponent

reflecting how sensitive
is the v to slope

0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5

LRR v (m/s) The wave velocity Jianxi: 0.6, 0.8, 1.0, 1.2, 1.4, 1.6
Shizhenjie: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2

There are 6 routing
parameter values

The LRR routing method needs to satisfy the Courant criterion [52]. The Courant
number is defined as:

Courant =
u× dt

dx
(4)

where Courant is Courant number, u is the wave velocity, dt is the time step, dx is the
cell size.

To avoid getting wrong discharge simulation performance, the computational Courant
number should satisfy the following criteria:

Courant < 1 (5)

In this study, daily discharge at the hydrological station is used to compare with the
simulated e. However, the running time step is set to be 1/20 day when the LRR routing
method is used for all computational cell sizes.

The maximum wave velocity and minimum computational cell size that appeared in
this article are used to calculate the maximum Courant number in this article.

Courantmax =
u ∗ dt

dx
=

1.2 m× s−1 × 24× 60× 60 s/20
8180 m

= 0.84 (6)

The Courant number is always less than 1 so that the change in the computational cell
size does not cause the model to violate the courter number with the LRR routing method.
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3.2. Runoff Generation Models
3.2.1. SIMHYD

In this study, two runoff generation models are selected to test the generality of the
result. The conceptual daily rainfall-runoff model SIMHYD [53,54] is employed as one of
our runoff generation models. This model has been previously applied in numerous study
areas, including China [53,55–57]. For more information on the model algorithm, refer to
Chiew et al. [53]. The details of the seven model parameters in the SIMHYD model are
shown in Table 3.

Table 3. Descriptions of the SIMHYD model parameters.

Parameters Description Prior Range
for Calibration

INSC (mm) Interception store capacity [0.05 10]
COEFF (mm) Maximum infiltration loss [0 500]

SQ (-) Infiltration loss exponent [0 10]
SMSC (mm) Soil moisture store capacity [0 1000]

SUB (-) Constant of proportionality in interflow equation [0 1]
CRAK (-) Constant of proportionality in groundwater recharge equation [0 1]

K(-) Base-flow linear recession parameter [0 1]

3.2.2. Water and Snow Balance Modelling System (WASMOD)

The second model used in the study is the water and snow balance modelling
system (WASMOD) [58]. WASMOD is a popular model that has been used in many
study areas worldwide [59–62]. The version of WASMOD used in this study is that of
Widén Nilsson et al. [62], which consists of only three parameters and no snow module.
The parameters for this version of WASMOD are listed in Table 4. Compared to the equa-
tions listed in Widén Nilsson et al. [62], two additional parameters are added. Parameter
c5 corrects the precipitation bias that arises due to a lack of snow measurements that oc-
cur occasionally at higher altitude areas and c4 is described in the potential evaporation
calculation equation (c4 is not needed when pett data are available):

pett = c4 · (max(tmpt + 25, 0))2 · (100− rht) (7)

where pett (mm·day−1) is the potential evaporation, tmpt (°C) is the temperature, and rht
(-) is the relative humidity, c4 (mm day−1 °C−2) is the parameter.

Table 4. Descriptions of the WASMOD model parameters.

Parameters About Prior Range for Calibration

a4 (-) Actual evaporation [0.1 0.999]
c1 (1/mm) Fast runoff [0 0.1]
c2 (1/mm) Slow runoff [0 0.1]

c4 (-) Potential evaporation [0.1 0.999]
c5 (-) Precipitation [0.5 1.5]

3.3. Different Computational Cell Sizes and Interpolation Method

Following the boundary of the study basin, computational cells for routing methods
are generated. The computational cell sizes range from 5 arc-min to 60 arc-min with an
interval of 1 arc-min, resulting in a total of 56 cell sizes. For illustration purposes, the
computational cells of Jianxi basin at the resolution of 10′ and 30′ are shown in Figure 3.
The computational cell is constructed according to the following principle: the leftmost
longitude of the cells is the same as the integer part of the leftmost latitude of the basin
boundary and the bottom latitude of the cell is the same as the integer part of the bottom
latitude of the watershed boundary. To maintain the water balance, the area of each
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cell is the area of the basin belonging to this cell. It can avoid the area errors for the
boundary cells [18]. After generating the computational cells, extract the flow net at the
same resolution of computational cell size using the network scaling algorithm (NSA) [63]
(Figure 3).

Figure 3. The computational cell and flow net of the Jianxi basin (a) at computational cell sizes of
10′ (b) and 30′ (c) with DEM resolution of 1000 m.

In order to match the resolution of the meteorological data recorded at the hydrological
station with the various computational cell sizes, the Inverse Distance Weighted (IDW)
method [64] is employed to interpolate the data to the grid with a resolution of 1 km. For
each grid, the distance from the grid center to all hydroclimatic stations is calculated. The
four stations closest to the center of the grid are selected to calculate the hydroclimatic data
values for this grid. The equations are as follows:

weight(i) = (1/dis(i))/
4

∑
i=1

(1/dis(i)) (8)

data = data_observation(i)× weight(i) (9)

where i is the corresponding number of the 4 stations which are the closest stations to the
grid center, weight is the weight of the station data, data_observation is the measured data of
the station, and data_g is the hydroclimatic data of the grid.

Using the linear average method, the interpolated meteorological data are then aggre-
gated into the gridded data with the resolution that matches that of the computational cell
size. For each cell, the hydroclimatic data value is calculated based on the grids which are
belonging to the cell.

data_c =

n
∑

j=1
data_g(j)

n
(10)

where data_c is hydroclimatic data of the cell, j is the corresponding number of the grids
belonging to the cell.

3.4. Calibration Algorithms

Two calibration algorithms are used in this study: the Monte Carlo algorithm [65] and
the Covariance Matrix Adaption Evolution Strategy (CMA-ES) [66]. Since the available data
are not long enough, the calibration period length is set as 7 years and the validation period
is set as 4 years according to Klemeš [67]. Besides, the warming-up period equals 1 year in
this study. The detailed information on the runoff generation and routing parameters that
require calibration are listed in Tables 2–4.
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The Nash–Sutcliffe efficiency (NSE) [68] is used for model calibration criterion, per-
centage bias (PBIAS) [69] is also used for results evaluation and comparison.

NSE = 1− ∑n
i=1 (Oi − Si)

2

∑n
i=1 (Oi −Oi)

2 (11)

PBIAS =

n
∑

i=1
(Oi − Si)

n
∑

i=1
Oi

× 100 (12)

where Oi (m3/s) is the observed discharge, Oi (m3/s) is the mean observed discharge,
Si (m3/s) is the simulated discharge, and n (day) is the length of the time step.

3.5. Experimental Design

There are a total of 1792 experiments in this study based on the cross combination
of two study basins, two routing methods, two runoff generation models, four DEM
resolutions and fifty-six computational cell sizes.

3.5.1. Optimal Routing Parameters

In this study, according to the characteristics of the routing method, the Monte Carlo
algorithm is used to calibrate the optimal I-NRF routing parameters, and the CMA-ES
algorithm is used to calibrate the optimal LRR routing parameters.

The routing parameters are mostly related to basin physical characteristics such as the
topography and the underlying surface. As such, it is assumed that the I-NRF and LRR
routing parameters are independent of the parameters from the runoff generation models.

Calibration of I-NRF Routing Parameters

The calibration process for the I-NRF routing parameters consists of four steps:

1. Several initial routing parameter sets are drafted. For the I-NRF routing method, there
are two parameters to be calibrated. Table 2 defines 49 initial routing parameter set
values. The number of the initial values is m (m = 1~49).

2. The optimal simulation performance for each initial routing parameter for a given
DEM resolution and a given computational cell size is calculated using Monte Carlo
calibration algorithm. The optimal model performance for each parameter set is
denoted as NSEm

i,j, where i corresponds to the DEM resolution and j corresponds to the
computational cell size. Then 48 NSEm

i,j values using the four different DEM dataset
resolutions (i = 1–4) and the 12 computational cell sizes (5 arc-min to 60 arc-min with
an interval of 5 arc-min) (j = 1–12) are obtained. In the calibration process, 300 runoff
generation parameter arrays are produced as the model input by Latin-Hypercube
sampling [70] according to the initial parameter range (Table 4). The applied marginal
distribution is the uniform distribution.

3. The comprehensive simulation performance for each initial routing parameter set of

each DEM resolution (NSEm
i ) is calculated, where NSEm

i = (
12
∑

j=1
NSEm

i,j)/12.

4. The optimal routing parameter set is selected from the initial routing parameter sets.
For each DEM resolution, the optimal routing parameter set for a given basin is

selected using
49

max
m=1

(NSEm
i ) as a criterion and listed in Table 5.

Calibration of LRR Routing Parameters

The CMA-ES algorithm is used to identify the optimal routing parameters for the LRR
routing method.

The calculation of the optimal LRR routing parameters happens in four stages:
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1. Several initial routing parameters are drafted. For the LRR routing method, there is
only one parameter to be calibrated. Table 2 defines 6 initial values. The number of
the initial values is n (n = 1–6).

2. The optimal simulation performance for each routing parameter for a given DEM
resolution and a given computational cell size is calculated using CMA-ES algorithm,
denoted as NSEn

i,j. With 4 DEM resolutions (i = 1–4) and 12 computational cell sizes
(5 arc-min to 60 arc-min with an interval of 5 arc-min) (j = 1–12), 48 NSEn

i,j values are
obtained. In the calibration process, the initial range of runoff generation parameters
is given in Table 4.

3. The comprehensive simulation performance (NSEn
i ) for each parameter of each DEM

resolution is calculated. Here, NSEn
i = (

12
∑

j=1
NSEn

i,j)/12.

4. The optimal routing parameter is selected from the initial routing parameters. For
each DEM resolution, the optimal routing parameter set for the basin is selected using

6
max
n=1

(NSEn
i ) as a criterion and the results are listed in Table 5.

Table 5. The optimal routing parameters of 4 kinds of DEM resolutions.

DEM Resolution (m ×m)
Jianxi Basin Shizhenjie Basin

v45 (I-NRF) b (I-NRF) v (LRR) v45 (I-NRF) b (I-NRF) v (LRR)

90 × 90 10 0.35 1.2 4 0.25 0.6
250 × 250 5 0.2 1.2 6 0.3 0.6
500 × 500 9 0.3 1.2 8 0.35 0.6
1000 × 1000 7 0.2 1.2 9 0.35 0.6

3.5.2. Optimal Runoff Generation Parameters

As mentioned above, there are a total of 1792 experiments. Once the optimal routing
parameters are obtained and fixed, the runoff generation parameters are calibrated in each
experiment using the CMA-ES algorithm [66]. Then the corresponding NSE values are
ultimately obtained (Figures 4–6) for 1792 experimental simulations.

Figure 4. Cont.
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Figure 4. Three-dimensional histogram of NSE under the cross combination of 4 DEM resolutions
(x-axis) and 56 computational cell sizes (y-axis) in Jianxi basin. There are four hydrological models:
the model composed of I-NRF and WASMOD (a); the model composed of I-NRF and SIMHYD (b);
the model composed of LRR and WASMOD (c); the model composed of LRR and SIMHYD (d).
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Figure 5. Cont.



Water 2022, 14, 797 13 of 27

Figure 5. Three-dimensional histogram of NSE under the cross combination of 4 DEM resolutions
(x-axis) and 56 computational cell sizes (y-axis) in Shizhenjie basin. There are four hydrological
models: the model composed of I-NRF and WASMOD (a); the model composed of I-NRF and
SIMHYD (b); the model composed of LRR and WASMOD (c); the model composed of LRR and
SIMHYD (d).

Figure 6. Cont.
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Figure 6. NSE under the cross combination of 4 DEM resolutions (different colors) and 56 compu-
tational cell sizes (x-axis). The results are shown in four subplots: the NSE of I-NRF in Jianxi basin
(a); the NSE of I-NRF in Shizhenjie basin (b); the NSE of LRR in Jianxi basin (c); the NSE of LRR in
Shizhenjie basin (d).

4. Results
4.1. The Effect of Computational Cell Size on the Discharge Simulation Performance

The NSE values for the various DEM resolutions (x-axis) and computational cell
sizes (y-axis) for both routing methods in Jianxi basin and Shizhenjie basin are shown in
Figures 4 and 5. To improve readability, line charts of NSE are shown in Figure 6.

Figures 4–6 show that the discharge simulation performance curve for the Jianxi
basin, as computational cell size changes, is mostly a straight line. While the WASMOD
model generates some noise in the NSE values of the Shizhenjie basin (Figures 5a,b and 6b),
the NSE values are mostly constant, despite the changing computational cell sizes. In
general, the discharge simulation performance with the I-NRF routing method stays stable,
regardless of the computational cell size. Gong et al. [18] discussed in detail why NRF
discharge simulation performance is scale-independent. I-NRF, the improved version of
NRF, retains the scale-independency characteristic of NRF. This scale-independency is
produced by the algorithm, in which the discharge simulation performance is obtained
by the convolution of the runoff generation result and the cell response function (CRF).
The CRF is aggregated from the pixel response function (PRF), which is determined by the
slope and the routing length extracted from the DEM grid when the wave velocity is fixed.
Besides, there is no loss of information in the process of converting the PRFs to CRFs. Thus,
the CRFs contain all the information from the PRFs and the DEM. As long as the DEM
resolution stays the same, this algorithm generates stable results that are insensitive to the
changes of computational cell size.

The performance of the LRR routing method is, however, different from that
of the I-NRF routing method, as it fluctuates as the computational cell size changes
(Figures 4c,d, 5c,d and 6c,d). The PBAIS shows the same trend as NSE. The computational
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cell size affects the LRR PBAIS more than I-NRF PBIAS. Furthermore, the fluctuations
observed in the NSE values in the Jianxi and Shizhenjie basins are not identical. For Jianxi
basin, the NSE curve fluctuates greatly, from 20′ to 21′ and from 30′ to 31′, etc., for every
DEM resolution (Figures 4 and 6). For the Shizhenjie basin, the NSE curve fluctuates from
18′ to 19′ and from 28′ to 29′, etc., with DEM of 90 m. It fluctuates greatly from 19′ to 20′

and from 28′ to 29′, etc., with DEM of 250 m, 500 m and 1000 m (Figures 5 and 6).
The sensitivity of the LRR routing method to the computational cell size arises because

the flow net changes with the computational cell size [18]. In fact, the flow net experiences
distinct structural changes as the computational cell size changes. For example, the NSE
curve fluctuates greatly, from 20′ to 21′ and from 30′ to 31′, etc., for every DEM resolution
in Jianxi basin (Figures 4 and 6). The differences of computational cell size between 20′

and 21′ or 30′ and 31′ are very small, but the resulting NSE differences are significant. To
better understand these turning points, the extracted river networks for computational cell
sizes of 20′, 21′, 30′, and 31′ in the Jianxi basin are plotted in Figure 7. From 20′ to 21′ and
from 30′ to 31′, minor changes in the computational cell size lead to a different allocation
of the outlet grid cells, which ultimately results in a significant difference in the flow net.
Besides, the LRR routing method is based on the flow net at a given computational cell
size. As such, a small change in the computational cell size leads to a large difference in the
NSE value.

Figure 7. The flow net in the Jianxi basin at the computational cell sizes of 30′, 31′, 20′, 21′ with DEM
resolution of 1000 m.

Additionally, the LRR NSE values are also sensitive to the computational cell size
because smaller computational cell sizes correspond to a finer and different flow net
(Figure 3). The high-resolution flow net not only better captures the shape of the real river
network, but also better simulates the length of the routing path. In the LRR method,
the length of the routing path affects the deformation and the smoothing of the flood. A
coarser computational cell size reduces the flow net between cells into a straight line, which
explains why the NSE value is higher and PBIAS is smaller when the computational cell
size is small. The result that the LRR routing method is sensitive to the computational cell
size confirmed the result from Arora et al. [45]. In that study, a finer computational cell size
resulted in better performance.

Whether the NSE of the LRR and I-NRF routing method is sensitive to computational
cell size is not related to the runoff generation model and the specific study basin in
this study, indicating that this pattern is universal. Therefore, to accurately simulate the
discharge, larger computational cell sizes can be used to save computing time when the
I-NRF routing method is used. For the LRR routing method, however, the choice of
computational cell size must be an informed decision.

4.2. The Effect of the DEM Resolution on the Discharge Simulation Performance

Box plots of NSE value variations with the computational cell size and the DEM
resolution are shown in Figure 8. The impact of the DEM resolution on the discharge
simulation performance is slightly larger for the I-NRF routing method than it is for the
LRR routing method. For the I-NRF routing method, the use of different DEM resolutions
leads to some differences in modelling performance, for both runoff generation models and
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for both study basins; from these observations, it can be inferred that the DEM resolution
directly affects the NSE values, to some extent (Figure 8c,d,g,h). For the LRR routing
method, the average NSE for all computational cell sizes is similar when DEM resolution
changes, regardless of the runoff generation model or the study basin. As such, it can be
concluded that the DEM resolution has little effect on the overall LRR discharge simulation
performance (Figure 8a,b,e,f). The laws analyzed from changes in PBIAS are the same as
those analyzed from changes in NSE.

Figure 8. Box plots of NSE as computational cell size changes when DEM datasets of different
resolutions are used. The range and box size represent the influence of fifty-six computational cell
sizes (ranging from 5 arc-min to 60 arc-min). There are four hydrological models that used in the
Jianxi basin: the model composed of LRR and WASMOD (a); the model composed of LRR and
SIMHYD (b); the model composed of I-NRF and WASMOD (c); the model composed of I-NRF and
SIMHYD (d). Those hydrological models are also used in the Shizhenjie basin: the model composed
of LRR and WASMOD (e); the model composed of LRR and SIMHYD (f); the model composed of
I-NRF and WASMOD (g); the model composed of I-NRF and SIMHYD (h).
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With the I-NRF routing method, different DEM resolutions produce variations in the
overall discharge simulation performance (Figures 6 and 8). However, in this study, the
difference in the NSE values generated by the different DEM resolutions is less than 0.03
(Figure 6), while the difference in the NSE values due to the implementation of the two
runoff generation models is greater than 0.03 (Figure 6). Besides, as shown in Figure 8,
there is no consistent correlation between the DEM resolution and the overall discharge
simulation performance for the I-NRF routing method. In the I-NRF routing method, an
accurate simulation of discharge value requires an accurate simulation of the routing time.
As per Equation (1), the routing time ti is calculated using the slope and the routing length.
The slope and routing length both increase with a finer DEM resolution [46]. In practice, it
is difficult to predict whether the ti value is closer to or further from the true routing time
value when the DEM resolution becomes finer (Equation (1)). Consequently, a finer DEM
resolution does not necessarily correspond to higher NSE values, a fact that was observed
in our study. In the Jianxi basin, the worst discharge simulation is generated with a DEM
resolution of 1000 m × 1000 m; in the Shizhenjie basin, the worst discharge simulation is
generated with a DEM resolution of 90 m × 90 m. Figures 3, 4 and 6 also show that DEM
resolution and computational cell size have almost no joint influence on the result of I-NRF.

For the LRR routing method, the NSE difference introduced by DEM resolution is
much smaller than that of computational cell size (Figures 6 and 8a,b,e,f). Finer DEM
resolution does not result in better model performance (Figure 8a,b,e,f). As discussed
previously, the LRR routing method is based on the flow net at a given computational cell
size. In addition, even the coarsest DEM resolution (1000 m) is still much smaller than the
smallest computational cell size (about 8180 m). Thus, the DEM slope and routing length are
largely irrelevant. Combining Figure 8 with Figure 6, it can be seen that the NSE with a DEM
resolution of 500 m is different from others at the computational cell size of 26′ and 39′ in
the Jianxi basin. Furthermore, for the Shizhenjie watershed, the NSE curves corresponding
to each DEM resolution do not overlap. To understand the difference caused by the DEM
resolution, the flow nets at the computational cell size of 39′ with DEM resolutions of
1000 m, 500 m, 250 m, 90 m in the Jianxi basin are drawn in Figure 9. It can be seen that the
flow net with the DEM resolution of 500 m is different from the others. That is the reason
why NSE with the DEM resolution of 500 m is different from others at the computational
cell sizes of 39′. Now it is known that the DEM resolution and the computational cell size
affect the upscaled flow net at the same time. On the one hand, when the DEM resolution
is different, the flow direction identification of some computational cells may be different,
which will cause disturbance to the basin flow net. On the other hand, the computational
cell size will also affect the basin flow net, as described in Section 4.1. Because the flow
net directly affects the discharge simulation performance in the LRR routing method, it
can be proposed that the DEM resolution and the computational cell size jointly affect the
simulated discharge when the LRR routing method is implemented. However, the joint
effect is very small and can be ignored in the actual simulation (Figures 6 and 8).

Figure 9. The flow net in the Jianxi basin at the computational cell sizes of 39′ with DEM resolution
of 1000 m, 500 m, 250 m and 90m.

In this paper, both coarser and finer DEMs are sufficient for hydrological modelling
with those conceptual models. However, such conclusions are not suitable for most hy-
draulic models. When using a hydrodynamic model, caution is still required regarding
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the choice of DEM resolution. For example, Horrit et al. [71] studied the effect of DEM
resolution on the LISFLOOD-FP model, using a 1D description of channel flow. Models
with resolutions varying from 10 to 1000 m are compared. The results showed that the
model achieves the best simulation of the inundated area when using a 100 m DEM. Cook
and Merwade [72] found that using a 1D HEC-RAS model, and a 2D FESWMS model, the
flood inundation area reduces with improved horizontal resolution and vertical accuracy
in the topographic model.

In order to facilitate researchers to choose the appropriate routing method when con-
ducting hydrological simulations, this paper lists the time duration of the two models.
Taking the case of using the WASMOD runoff generation model and Jianxi basin as an
example, the running times of the two routing methods are compared (Table 6). According
to the above discussion, for both routing methods, a finer DEM cannot guarantee a better
simulation effect. Therefore, the time duration of the model under different DEM resolu-
tions is not discussed here. It should be noted that the time duration of the models listed in
this article does not include pre-processing and preparation of data, but includes parameter
optimization of the model. The computer used to count the running time is as follows. OS:
Windows 10 Pro 64-bit; CPU: Intel Core i7-9700 @ 3.00GHz eight-core; Memory: 16 GB;
Sofeware: MATLAB R2020b.

Table 6. The time duration of the hydrological model with I-NRF or LRR routing method.

I-NRF LRR

Jianxi Bain
(1000 m)

5 arc-min 1768 s 2450 s
60 arc-min 165 s 225 s

It can be seen that the time duration of both routing methods is within the acceptable
range, and the time duration of I-NRF is slightly shorter. However, a finer computational
cell size leads to a huge increase in time duration. Thus, a finer computational cell size
means a longer time duration and better simulation performance for the LRR routing
method, while coarser computational cell size can be used with the I-NRF routing method
to save time. Therefore, this paper proposes to choose the I-NRF routing model when
conducting watershed-scale hydrological simulations.

4.3. Analysis of Discharge Duration Curves

To further analyze the effects of the DEM resolution and the computational cell size on
the simulated discharge for the two routing methods, the corresponding discharge duration
curves are calculated for each DEM resolution and computational cell size. The discharge
duration curve is a statistical curve that represents the proportion of days in which the
flow exceeds a specified threshold value in a certain time period. Figures 10 and 11 plot the
observed discharge duration curve and the simulated discharge duration curve clusters
for the various DEM resolutions and computational cell sizes. The colors of the simulated
discharge duration curve clusters correspond to the different DEM resolutions. The ordinate
is the daily flow and the abscissa is the cumulative proportion. To more easily visualize the
instances of high flow predicted by the hydrological models, a horizontal logarithmic axis
is applied to this plot. Smaller values on the horizontal axis correspond to larger flows.

As shown in Figures 10 and 11, both DEM resolutions and computational cell size
influence the simulated discharge. The effects of the computational cell size and the DEM
resolution on the simulated discharge accuracy are mainly reflected in the high-flow range
(i.e., the first 1% of the discharge). As shown by the discharge duration curves of the two
runoff generation methods, it can be seen that the WASMOD model tends to underestimate
the high flow, and SIMHYD can simulate high flow better than WASMOD in the study area.
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Figure 10. The simulated discharge duration curves under the cross combination of 4 DEM resolutions
and 56 computational cell sizes in the Jianxi basin. There are four hydrological models: the model
composed of I-NRF and WASMOD; the model composed of I-NRF and SIMHYD; the model composed
of LRR and WASMOD; the model composed of LRR and SIMHYD.
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Figure 11. The simulated discharge duration curves under the cross combination of 4 DEM resolutions
and 56 computational cell sizes in the Shizhenjie basin. There are four hydrological models: the
model composed of I-NRF and WASMOD; the model composed of I-NRF and SIMHYD; the model
composed of LRR and WASMOD; the model composed of LRR and SIMHYD.
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4.4. Analysis of Runoff Generation Parameters

The optimal runoff generation parameters in the Jianxi and Shizhenjie basins, identified
from a combination of 4 DEM resolutions and 56 computational cell sizes, are shown in
Figures 12 and 13.

Figure 12. Distribution of optimal runoff generation parameters in the Jianxi basin under the cross
combination of 4 DEM resolutions (different colors) and 56 computational cell sizes (x-axis). Each
subtitle is the parameter name and the initial calibration range of the parameter. The left side
of each subgraph is the I-NRF optimal parameter distribution, and the right is the LRR optimal
parameter distribution.
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Figure 13. Distribution of optimal runoff generation parameters in the Shizhenjie basin under the
cross combination of 4 DEM resolutions (different colors) and 56 computational cell sizes (x-axis).
Each subtitle is the parameter name and the initial calibration range of the parameter. The left side
of each subgraph is the I-NRF optimal parameter distribution, and the right is the LRR optimal
parameter distribution.
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In the Jianxi basin, the optimal runoff generation parameters with the I-NRF routing
method vary with the different DEM resolutions (Figure 12). Furthermore, when the runoff
generation parameters with the I-NRF routing method change with the computational cell
size, parameters a4, c1, and c2 in the WASMOD model are more stable than the parameters
in the SIMHYD model, a difference that may be caused by the equifinality effect that
arises due to the higher number of parameters in the SIMHYD model. The equifinality of
model parameter sets is a common phenomenon. There are records of this phenomenon
in Beven [73,74]. The optimal runoff generation parameters with the LRR routing method
appear to be largely insensitive to the DEM resolution. With the LRR routing method,
the turning points in the curves in Figure 12 correspond somewhat to those in Figure 6c.
Additionally, they show the same or the opposite trend to the NSE curves. Some parameters
are sensitive to the computational cell size, while others are not. In the Jianxi basin,
parameters SUSC, K, c1, and c2 exhibit opposing NSE trends. While, parameters SQ, SMSC,
SUB, and K in the SIMHYD model and parameters a4, c1, and c2 in the WASMOD model,
parameters a4, SUB, and SQ, exhibit similar trends with NSE (Figures 12 and 6c).

The results for the Shizhenjie basin are shown in Figure 13. Just as they did in the
Jianxi basin, the optimal runoff generation parameters with the I-NRF routing method
vary with the DEM resolutions. The runoff generation parameters with the I-NRF routing
method vary much more widely with the computational cell size in the Shizhenjie basin
than they do in the Jianxi basin. Besides, the runoff generation parameters with the LRR
routing method vary much more widely with the DEM resolutions in the Shizhenjie basin
than they do in the Jianxi basin. With the LRR routing method, the parameters c1 and SUB
follow the same NSE trends, while parameters K and c2 exhibit opposing NSE trends as
computational cell size changes in the Shizhenjie basin (Figures 13 and 6d).

The uncertainty in simulation performance includes the input forcing, boundary
condition data, model structure and so on [75,76]. It will be necessary to study how they
affect the overall uncertainty in the on-going research.

5. Conclusions

Previous studies have reported how the DEM resolution and computational cell size
affect the modelling results separately. However, too little work has been devoted to how
they jointly affect the routing method performance. This study sought to understand how
the DEM resolution and the computational cell size jointly affect the simulated discharge
results produced by the I-NRF and LRR routing methods. Two runoff-generation models
were used to test the generality of the result. In these models, computational cell sizes that
range from 5 arc-min to 60 arc-min, with an interval of 1 arc-min and DEM resolutions of
90 m, 250 m, 500 m, and 1000 m are used. The conclusions are as follows:

1. The DEM resolution has a larger impact on the I-NRF discharge simulation per-
formance than it does for the LRR method. However, the overall I-NRF discharge
simulation performance is not consistently correlated with DEM resolution. As the
computational cell size increases, the I-NRF discharge simulation performance is rela-
tively stable because the I-NRF method is largely independent of the computational
cell size. The DEM resolution and the computational cell size exert no joint influence
on the I-NRF discharge simulation performance.

2. The DEM resolution has little effect on the LRR discharge simulation performance. The
LRR discharge simulation performance changes drastically with the computational
cell size for both runoff generation models. In general, finer computational cell size
leads to better results, while the LRR discharge simulation performance oscillates
heavily as the computational cell size increases. The joint effect of DEM resolution
and the computational cell size on the performance of the LRR routing method can be
ignored in hydrological modelling.

3. The effects of the computational cell size and the DEM resolution on the simulated
discharge accuracy are mainly reflected in the high-flow range. In this study, the
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performance of SIMHYD is better than that of WASMOD in the high-flow range, when
they are combined with both routing methods.

These results will provide guidance as to how hydrological researchers can use their
knowledge of the study area and their computational limitations to make reasonable
routing method, DEM resolution, and computational cell size choices.
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