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Chapter 1

Introduction

Over the last years the usage of wavelet transforms has increased many folds for different
applications in signal and image processing. Wavelet techniques provide a new approach to
many problems where one can combine time and frequency domain processing to some level.
These ideas have made wavelets very suitable, especially, for image compression. Methods to
design and to find the "best" wavelet filters for compacting purposes have been an active area of
research and wavelets have also become the preferred choice for modern image compression.
Compression of images have important applications in for example storage and transmission,
and a wavelet transform of an image is generally the first step towards this compaction process.

Typical methods to design wavelet filters focus heavily upon the wavelet functions and their
properties such as regularity, smoothness and symmetricalness. The purpose behind this study
is to take a distinctive view of the biorthogonal wavelet filter design process, and experiments
with new types of wavelet filters which are optimized for a particular signal or image. The
word "best" or "optimized" can be interpreted in many different ways; our concentration will
be upon the energy shifting properties of wavelet filters.

This text is divided into 8 chapters. Chapter 2 gives some insight into wavelet theory from a
signal processing point of view. Today, many books are available on wavelets and this chapter
obviously only covers a few general aspects.
The main consideration of chapter 3 is on selected orthogonal and biorthogonal wavelet filters
which are used in signal and image processing. We examine these filters’ energy shifting prop-
erties.
Starting with chapter 4 emphasis is given to the construction of optimized linear phase per-
fect reconstruction filters for a given one dimensional signal. This concept is further treated in
chapter 5 where methods to increase stability are introduced.
Chapter 6 then expands the filter design optimization problem to the more interesting cases of
two dimensional images. At the end, in chapter 7 we look at generating optimized filters for
iterative decomposition of an image.
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Chapter 2

Wavelets

The purpose of this chapter is to provide an intuitive understanding of what wavelets are and
why they are used in signal and image processing. Generally [3], [5], [6] and [15] have been
used as the main reference sources. Much of the theory behind wavelet analysis and filter
banks is very well established and for more details and proofs the above references should be
consulted.

2.1 Wavelet functions

Wavelets are continuous basis functions designed specially to also satisfy certain mathematical
properties. A wavelet is defined as a function with zero mean value, hence it is both above and
below the x-axis looking like a ’wave’. Some examples of wavelet functions are shown in the
next figure.
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Figure 2.1: Example of wavelet functions

The function on left often goes under the name of Haar wavelet while the one on right is a
variant of Daubechies wavelets. Wavelet functions can be of many other shapes as long as they
have compact support. It is also straightforward to observe that the mean value is indeed zero;∫∞
−∞ ψ(t) dt = 0.

The idea behind wavelets is that by squeezing or stretching one such main wavelet function
ψ(t) (the mother wavelet) and by translating it on the x-axis one can represent finer parts of a
function or a signal by simple linear combinations: f(t) =

∑
j,k bj,k ψj,k(t)

The concept is similar to Fourier transform of a signal where a function is represented via
trigonometrical basis functions; in wavelets analysis however, the functions are restricted in
the time-domain. A whole family of wavelet functions can further be obtained by just shifting
and scaling the main wavelet by:

2



CHAPTER 2. WAVELETS 3

ψj,k(t) = 2j/2ψ(2jt− k)
The normalization this way ensures energy preservation ||ψj,k(t)|| = ||ψ(t)||, where one expects
||ψ(t)||2 =

∫∞
−∞ ψ(t)2 dt = 1. There are also other ways to define dilations and translations such

as ψu,s(t) = 1√
|s|
ψ( t−us ) where u and s are real numbers, though our first definition is more

suitable for later expansion into discrete forms. We have so far assumed that j and k have been
real integers and will continue to assume so also for l, J and K.

Increasing j dilates the wavelet by compressing it and more finer details of functions can then
be represented accurately. The wavelets from figure 2.1 are shown dilated and shifted by one
level in figure 2.2. ψ1,0(t) is on the left side on the plots while the translated wavelet ψ1,1(t) is
on right in dashed print.
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Figure 2.2: Example of dilated and translated wavelet functions

Another important property which is satisfied by many wavelets is that of orthogonality. The
inner product between dilated and translated wavelet functions must be zero:

∫∞
−∞ ψj,k(t) ψJ,K(t) dt = δ(k −K) δ(j − J)

A continuous wavelet transform of f(t) at scale j and position k is defined as

F (j, k) =
∫∞
−∞ f(t) ψ∗j,k(t) dt

This equation shows how a function f(t) is decomposed into a set of basis wavelet functions
ψj,k. This may looks like a very redundant transform as it expands a one-dimensional func-
tion into two-dimensions. Nevertheless, starting with dilations and translations of wavelets
we see that for a large j ψj,k(t) is short and of high frequency. Smaller values for j on the other
hand give long wavelet functions of low frequency. This makes it easy to analyze a function in
different scales. The compact support of wavelet functions also show up in the transform giv-
ing good localization properties, in particular sharp time localization also at high frequencies
which distinguishes it from other short-time Fourier transforms. Orthogonal wavelet trans-
forms also preserve the energy of the original function as a formula similar to Parseval’s the-
orem is available.

The approximation of a function/signal via wavelet functions depends upon the resolution of
the basis functions. A larger j for example gives us shorter functions which hence approximates
the signal with increased accuracy. We define the space of functions generated via a particular
j as Wj ; Wj = sp{ψj,k}.
Functions in Wj+1 have double resolution than those in Wj , due to the scaling by 2j . This can
also be observed by directly comparing figures 2.1 and 2.2.

Wj ⊂Wj+1

As j is increased it should start incorporating the space of all functions with limited energy:
W0 ⊂W1 ⊂ ... ⊂Wj ⊂Wj+1 ⊂Wj+2 ⊂ ... ⊂ L2
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2.2 Scaling functions

In approximation theory wavelet functions go hand in hand with scaling functions φ(t); each
wavelet function ψ(t) is linked with a scaling function creating a pair. Together these two
functions are used to approximate functions or signals. The scaling function gives an overall
coarse approximation of the signal while the wavelet functions give the more finer details. The
coarse signal along with the details combine into a multiresolution analysis of the signal.

Scaling functions related with wavelets in the previous figure are shown in figure 2.3.
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Figure 2.3: Example of scaling functions

The Haar scaling function can be seen on left and the Daubechies 8 scaling function is on right.
Like wavelet functions scaling functions too are required to have compact support but they do
not have zero mean value. On the contrary normalized scaling functions must cover an area of
one unit:

∫∞
−∞ φ(t) dt = 1.

Shifting and dilation of scaling functions follows the same preceding methodology: φj,k(t) =
2j/2φ(2j t− k) thus a basis of scaling functions can also be used to approximate a function:
f(t) =

∑
j,k aj,k φj,k(t).

The scaling functions used in the expansion have just like wavelets functions changing time-
frequency properties.

Scaling functions too are required to satisfy the requirements for orthogonality but only on the
same scale: ∫∞

−∞ φj,k(t) φj,l(t) dt = δ(k − l)
On top of this the scaling functions must be orthogonal to the wavelet functions both on scale
and translation: ∫∞

−∞ φj,k(t) ψJ,K(t) dt = 0

The last but important constrain makes it difficult to construct smooth orthogonal wavelet fil-
ters consequently many orthogonal wavelet system have functions with irregular shapes re-
sembling fractals. Orthogonality is very important for numerical stability and also for energy
preservation.

The space of functions generated via a particular j by scaling functions is defined by Vj ; Vj =
sp{φj,k}.
As previously we have Vj ⊂ Vj+1 and increasing j leads us to:

V0 ⊂ V1 ⊂ ... ⊂ Vj ⊂ Vj+1 ⊂ Vj+2 ⊂ ... ⊂ L2

The functions on the left sides in figure 2.4 are φ1,0(t) which are just dilated versions of the
main scaling functions φ(t). The other functions on right (dashed) are additionally shifted by
one: φ1,1(t). The original mother function can be obtained easily: φ(t) = 1√

2
φ1,0(t) + 1√

2
φ1,1(t).

The scaling by 2 always doubles the resolution when the basis is increased from Vj to Vj+1,
this means we can write a function g(t) in Vj as g(2t) in Vj+1. Generalizing this an equation
connecting the functions from these two different bases can hence be constructed:



CHAPTER 2. WAVELETS 5

−0.5 0 0.5 1 1.5
0

0.5

1

1.5
Haar

Sca
ling

 fun
ctio

ns

t
0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

1

1.5

2

Sca
ling

 fun
ctio

ns

t

Daubechies 10

Figure 2.4: Example of dilated and translated scaling functions

φ(t) =
√

2
∑N−1

k=0 h[k] φ(2t− k)

This is the dilation equation for the scaling function.

Due to orthogonality all elements in Vj must be perpendicular toWj . It can be validated thatWj

makes up for the difference of elements between Vj and Vj+1. This can be used as a new explicit
method to construct wavelets out from scaling functions. As the wavelets are the differences
of the scaling functions we get ψ(t) = 1√

2
φ1,0(t) − 1√

2
φ1,1(t). This creates a direct relationship

between scaling functions and wavelet functions.

We can now conclude with that a similar equation to the dilation equation can be implemented
to link wavelets with scaling functions.

ψ(t) =
√

2
∑N−1
k=0 g[k] φ(2t− k)

This equation is called the wavelet equation.

It turns out that h[n] and g[n] can in fact be regarded as coefficients of FIR filters.

2.3 Multiresolution analysis and Biorthogonality

The standard idea behind wavelet analysis is to represent a function or a signal via a combin-
ation of scaling and wavelet functions. The scaling functions are used to give an overview of
the main function while wavelets represent the errors of the approximation done by the scaling
function at different levels.

The approximation of a function given by the scaling function at a given scale is not perfect and
it’s here where wavelets come in. One can think of functions in Wj as a means of representing
the parts of a function in Vj+1 that cannot be represented in Vj . As Wj is orthogonal to Vj this
does not pose any overlap and by using both Vj and Wj the accuracy is improved by one scale.
We can therefore write Vj+1 = Vj ⊕Wj . Repeating the argument we end up with

Vj+1 = V0 ⊕W0 ⊕W1 ⊕ ...⊕Wj

V0 can be said to give the average behavior of a function/signal while Wl gives the more finer
details at various scales. This is multiresolution analysis.

If the approximation by the scaling function is good then one can expect good decorrelation as
many of the wavelets coefficients will be close to zero.

So far we have seen orthogonal wavelets where Wj must be the orthogonal complement of
Vj in Vj+1. Biorthogonal wavelets define a superset of the orthogonal wavelets and were first
developed by Cohen et al. [4] for use in multiresolution analysis.

Biorthogonal wavelets as the name implies are no longer directly orthogonal to the scaling
functions but they do satisfy certain orthogonal properties via the dual basis functions. Dual
basis functions for ui, ũi are defined as:∫∞

−∞ ui(t) ũj(t) dt = δ(i− j)
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Dual basis functions are central to the definition of biorthogonal wavelet constructions. Using
the duals for the scaling and the wavelet functions biorthogonal wavelets must satisfy the fol-
lowing conditions:∫∞

−∞ φj,k(t) ψ̃J,K(t) dt = 0 and
∫∞
−∞ φ̃j,k(t) ψJ,K(t) dt = 0

Scaling and wavelet functions are now orthogonal to the duals:
∫∞
−∞ φj,k(t) φ̃j,l(t) dt = δ(k− l)

and
∫∞
−∞ ψj,k(t) ψ̃J,K(t) dt = δ(j − J)δ(k −K).

Furthermore the orthogonality Vj ⊥Wj takes a new general shape:
Vj ⊥ W̃j and Ṽj ⊥Wj

where Ṽj = sp{φ̃j,k} and W̃j = sp{ψ̃j,k}.
As an effect we now need two different hierarchies of spaces, Vj and Ṽj . In addition to the
standard dilation and wavelet equations we need two similar equations for the duals:

φ̃(t) =
√

2
∑N−1

k=0 h̃[k] φ̃(2t− k)

ψ̃(t) =
√

2
∑N−1
k=0 g̃[k] φ̃(2t− k)

Expansions are now carried out by the standard functions but reconstruction is performed via
the duals. Having a non-orthogonal basis does complicate things a bit as shown in figure 2.5.

w1

w2

w1

w2

Orthogonal                                       Non-orthogonal

s
s

Figure 2.5: Orthogonal and non-orthogonal basis

In a (normalized) orthogonal basis the signal s can be represented easily by linear combina-
tions of the basis vectors; such as s = c1w1 + c2w2 where ci are the coefficients calculated by
projecting s on wi.
In the non-orthogonal basis this will not be the situation. Projecting s into the axes and later
adding together as in the orthogonal basis will generally not equal s, instead it will be a differ-
ent function. The non-orthogonal basis will allow us to reconstruct the original s but to do so
when projecting s into w1 we will have to be careful to make the projection parallel to w2. To
compute a single coefficient for w1 will therefore involve using the other vectors for the basis
as well as. This is here where some correlation come into play as for the biorthogonal case we
have two- and two pairs of functions which are not orthogonal but in between linked via the
biorthogonality relations.

2.4 Filter banks

The wavelet multiresolution analysis method can easily be extended and implemented on dis-
crete data by means of filter banks. A filter bank is basically just a collection of many filters
preferably with certain properties and with a common input signal. Figure 2.6 shows an ex-
ample of a such two-channel filter bank.

As long as the two filters H0(z) and H1(z) are different the output subsignals u[n] and v[n] are
also not equal to each other. The idea behind filter banks makes more sense if one of the filter
for example H0(z) is a lowpass filter and the other a highpass filter. This way the filter bank
splits the signal into different frequency bands. The length of these two new signals is the same
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X[n]
H (z)

H (z)

1

0 u[n]

v[n]

Figure 2.6: Two-channel filter bank

as the original signal, however, it should be possible to downsample u[n] and v[n] by two by
removing every second sample, thus avoiding any increase of the data. It turns out that this is
indeed possible if the filters satisfy certain mathematical requirements.
Repeating the process backward by upsampling and inverse filtering then recovers the original
signal without any data loss.

The concept of filter banks can be expanded in many ways. One strategy is to iterate the pro-
cess on the subsignals a few times. The ideas behind wavelet filter banks follow pretty much
the same methodology: a pair of filters are used where a lowpass and a highpass filter parti-
cipate, the filters are also constructed so that downsampling by two still later enable perfect
reconstruction of the signal. Additionally the decomposition process is iterated a few times on
the low frequency side. See figure 2.7 for an example of a wavelet filter bank with one level of
decomposition and reconstruction.

G (z) 2
d[n]

2

2

2 H (z)

G (z)

~
H (z) X[n]X[n]

c[n]

d[n]

~W

V0

0

c[n]

Figure 2.7: Wavelet filter bank

When displaying the decomposed signal it is standard custom to show all the sections in one
plot where the left side displays the low frequency part while the high frequency subsignal is
on right. See figure 2.8.

X[n]

c[n]                                                              d[n]

Figure 2.8: Plotting practice

The decomposing filters (h[n] and g[n]) on the left are the analysis filters while the reconstruc-
tion filters (h̃[n] and g̃[n]) go under the name of synthesis filters. A tilde sign is imposed to
indicate the synthesis side.
c[n] stands for the lowpass filtered signal downsampled by 2 while d[n] is the highpass filtered
equivalent. These conventions are used throughout the chapters.

Figure 2.9 shows how the iteration process can be repeated with wavelets.

The plotting follows the logarithmical decomposing style (figure 2.10).

To use wavelet techniques effectively on discrete data we need to treat wavelets in a discrete
manner. This is accomplished by looking at the wavelet and scaling functions as impulse re-
sponses of a filter. The wavelet function generates the analysis highpass filter g[n] while the
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H (z)

G (z) 2

X[n]

d1[n]

2

2

2H (z)

G (z)
W

V

W
c[n]

d2[n]

0

0

1

Figure 2.9: Wavelet filter bank - iterative decomposition

X[n]

c[n]                             d2[n]                              d1[n]

Figure 2.10: Plotting practice

scaling function builds the lowpass filter h[n]. Passing a signal X [n] through the lowpass scal-
ing filter removes the high frequencies from the signal, half of the samples can then be elimin-
ated to obtain c[n]. Exactly the same procedure is also repeated with the highpass wavelet filter
to acquire a high frequency subsignal d[n]. The lowpass averaging filter is there to capture the
coarse behavior of the signal while filtering via g[n] returns the finer details.

The signal is now decomposed in two parts; one with low frequencies and the other with high
frequencies. On the negative side the time resolution is reduced by a factor of two, this process
is also known as subband coding. At every level (scale), the filtering and down sampling res-
ults in half the number of samples along with half the time resolution, and half the frequency
band spanned with doubled frequency resolution. The process is then normally repeated with
the lowpass filtered subband, however, one is free to iterate the process even with the high-
pass filtered section; such decomposing goes under the name of wavelet packets. Figure 2.11
demonstrates this.
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Figure 2.11: Wavelet packet two-scale decomposition

Having a filter bank can be of limited usage if one is not in a position to later fully recover the
original signal. It can be shown that perfect reconstruction from a two-channel filter bank is
possible only if the filters satisfy:

H̃(z) H(z) + G̃(z) G(z) = 2z−l, odd l
H̃(z) H(−z) + G̃(z) G(−z) = 0

The first equation is required for reestablishment of the original signal with a possible time-
delay while the second equation is there to cancel out any aliasing.

The desired property of orthogonality in filter banks additionally imposes some very strict
relations on the filters. If the lowpass filter H(z) of length N has been selected then the analysis
highpass filter must satisfy

G(z) = −z−NH(−z−1)

Orthogonal scaling and wavelet filters are related with each other in a perfect way creating
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symmetry in the frequency response of the filters. Figure 2.12 shows such an example of the
frequency responses of an orthogonal filter bank. |H(ω)|2 + |G(ω)|2 = 2 is satisfied and this is
always the case with orthogonal wavelet filters.
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Figure 2.12: Frequency responses of low (solid) and highpass (dashed) filters

Reconstruction of the decomposed signal is later performed with synthesis filters H̃(z) (low-
pass) and G̃(z) (highpass). The inverse filters must be related with the analysis filters to enable
perfect reconstruction and cancel out any aliasing.

The synthesis filters are generated by alternating the signs and flipping the analysis filters:

H̃(z) = z−NG(z−1)
G̃(z) = −H(−z)

Having set the lowpass filter coefficients there is therefore only one unique way to construct
the highpass and the reconstruction filters. The filters are all also required to be of even length.
If we for example start with h[n] = [a b c d] then the other filters can be obtained via the
asymmetries given in the mentioned equations, see figure 2.13.

[d c b a]H [a b c d] H
~

G [-d c -b a] [a -b c -d] G
~

Figure 2.13: Relationship between coefficients

Orthogonal filters are little flexible due to their intimate relationships, biorthogonal filter banks
give us more options in designing filter banks and can be related with biorthogonal wavelet
theory. This removes the demand of orthogonality between H(z) and G(z), unfortunately fre-
quency responses from biorthogonal filters may now not show any symmetry and the energy
of the decomposed signal may also not equal the energy of the original signal.

The added flexibility shows up very clearly as the two filters which analyze and divide the
signal into a low- and a highpass section H(z) and G(z) are allowed to be very different from
each other. The filters, however, are required to show orthogonality to the quadrature filter
bank pair which is used for the inverse transform.

Why do we need to use biorthogonal wavelets at all? The answer to this question lies be-
hind some requirements which are often put on wavelet functions. One such condition is that
wavelet functions should have compact support; looking at the functions as impulse responses
compact support transforms over to a filter having finite impulse response. If a wavelet func-
tion does not have compact support we have to use an IIR filter to approximate the function,
and IIR filters are more difficult to work with and they also require extra computing power.
The demand for compact support and orthogonality leads to filters which must be asymmet-
rical, henceforth a non-linear phase in FIR filters. The use of a non-linear phase filter can in
some cases result in unwanted artifacts in the data.
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If we would like to have symmetry in wavelet filters by asking for linear phase filter response
then we must be willing to give up one of our requirements of either having orthogonality
or compact support. Although non-compactly supported filters have been demonstrated [7]
they have their own problems. It turns out that using biorthogonal wavelets we acquire both
symmetry and compact support in our wavelets. They can also be made almost perpendicular
and do not cause extra problems computationally, giving us linear phase filters rather cheaply.
Due to the symmetry in filters the wavelet functions generated are also symmetrical, some-
thing which is not achievable with orthogonal filters. Symmetrical wavelet functions are often
preferred in image processing.

Biorthogonal systems are also more easier to construct than orthogonal filters due to their flex-
ibility. Scaling filters H(z) and H̃(z) now don’t even need to be of the same length but they
must both have either even or odd number of taps.

The synthesis filters can as for the orthogonal case be generated by alternating the signs and
swapping the analysis filters. Figure 2.14 demonstrates the case for odd length symmetrical
filters.

[k l k]H [a b c b a]

G [-k l -k] [a -b c -b a]

H
~

G
~

Figure 2.14: Relationship between coefficients

As long as the filters satisfy the two equations required for perfect reconstruction they build
a legal PR filter bank. In the next section certain requirements on the filters are gone through
which guarantee the convergence of filter banks to proper scaling and wavelet functions.

In figure 2.9 an example of an iterated filter bank was shown. Although the scaling and wavelet
functions are not explicitly used, a link between the discrete-time filters h[n] and g[n] with
the continuous-time scaling and wavelet functions can be generated via the recursive cascade
algorithm :

φ(j)(t) =
√

2
∑N−1
n=0 h[n] φ(j−1)(2t− n)

ψ(j)(t) =
√

2
∑N−1

n=0 g[n] ψ(j−1)(2t− n)

Given initial starting values φ(0)(t) and ψ(0)(t), the goal is of course that these functions con-
verge to a fix point:

limj→∞ φ(j)(t) = φ(t)
limj→∞ ψ(j)(t) = ψ(t)

Twenty iterations of the above algorithm are used when plots of scaling and wavelet functions
are displayed in this text.

2.5 Properties and Design

There are many different methods on how to construct wavelet filters for use in filter banks.
The classical strategy goes on first creating analytical formulas for wavelet and scaling function
who are then transformed into their discrete counterparts.

An alternative to the above strategy is to directly work upon the filters. Even here one can
go more theoretical to work by building filters in the z-domain with the desired properties or
one can directly generate discrete filters with numerical values. We will focus upon numerical



CHAPTER 2. WAVELETS 11

construction of wavelet filter banks as this is one way to make filters which can be made signal
specific.

If orthogonal wavelets are desired then one can start building with the analysis scaling filter
H(z) according to the required properties.

For biorthogonal wavelets we need different set of bases for H(z) and H̃(z). This way we start
with the scaling filters and construct the wavelets out from that.

• The scaling filter H(z) (and H̃(z)) are lowpass filters and in wavelet theory they are re-
quired to have at least one zero point at z = −1 in the complex plane (|H(π)| = 0). As the
wavelet filters are designed by swapping and sign changing the scaling filters this implies
that G(z) (and G̃(z)) have at least one zero at z = 1 (|G(0)| = 0).

In discrete form this transforms over to:
∑
h[2n] =

∑
h[2n+ 1]

• The requirement on the other end of the frequency response is |H(0)| =
√

2 for all scaling
filters. This is the same as imposing: ∑

h[n] =
√

2
This is an essential condition for the dilation equation to converge to compactly suppor-
ted basis functions.

It can be shown that the effect of the last two equations on the wavelet filters leads to an
average value of 0:

∑
g[n] = 0. We also end up with |G(π)| =

√
2.

• Conditions for orthogonality or more general biorthogonality are very important and the
discrete version takes the shape of:∑

h[n] h̃[n+ 2k] = δ[k]

If one is working with orthogonal filters then due to symmetry in the filters the equation
obtains a very simple shape for k = 0:

∑
h[n]2 = 1. In other words the energy of the

original signal is preserved by the filter.

It can be shown that the above conditions are all what we need to design proper discrete wave-
let filter banks with perfect reconstruction and that the functions generated will satisfy all the
main requirements set for them in the continuous case. There is, however, no guarantee that the
functions generated via the cascade algorithm will really converge to a function with limited
energy.

The above equations are also not enough to fully define a wavelet system. If both the filters
are of length N then there is N/2− 1 degrees of freedom left in the system which can be used
pretty much as pleased. In many cases this extra degree of freedom is used to make the scaling
functions more smoother or to form the magnitude response of the filters as flat as possible at
certain frequencies.

2.5.1 Regularity

Wavelet and scaling functions can be of many shapes but one often desired requirement is that
the functions should be reasonable smooth. Regularity is concerned with differentiability of
these functions which in one sense defines smoothness.

Regularity can be linked with the number of zeros at z = −1 of the scaling filter which are also
known as the number of vanishing moments for the wavelet filter. The higher the number of



CHAPTER 2. WAVELETS 12

vanishing moments the more tightly energy is concentrated among the scaling functions. With
M moments the wavelet function fulfills

∫∞
−∞ tk ψ(t) dt = 0 for k = 0, 1, ..,M , and all polyno-

mials up to degree M − 1 are captured by the space of Vj in a decomposition. This property is
important when a smooth function or signal needs to be decomposed using wavelets.

At least one zero at z = −1 is required from the scaling filter in the first place but with additional
zeros the degree of smoothness can be increased. As a matter of fact regularity is the main point
which distinguishes filter banks with perfect reconstruction from wavelet filter banks.

The discrete version of the above equation takes the form of:∑
nKg[n] = 0

which must be satisfied for K = 0, 1, ..,M .

A regular filter through iterations lead to a scaling function with some degree of smoothness.

The number of vanishing moments can also be increased to M̂ for the scaling filters them self
by making sure they obey

∫∞
−∞ tk φ(t) dt = 0 for k = 0, 1, .., M̂ . This can be of interest in certain

circumstances such as when wavelet packets are to be implemented. Vanishing moments for
scaling function can also be related to indicate the symmetry characteristics of the function.

2.5.2 Images

The wavelet concepts for one dimensional signals can trivially be extended to two dimensional
images. Instead of creating wavelet and scaling functions of two variables one can treat a
picture row-by-row and column-by-column. This gives a very cost effective and simple method
to expand wavelet theory into several dimensions.

A wavelet decomposition of a digital image is performed by first going through an image row-
by-row and decomposing each row like it was a standard one dimensional signal. After having
gone through all the lines a new image can be build where the left side represents the low
frequency part of each row while the right side shows the high frequency parts of each row.
The same steps can next be repeated column-by-column which at the end gives an image which
is arranged of four quadrats.

The square on upper-left only consists of low frequencies while the lower-right square only
shows the very high frequency details. The other two subbands display a mixture of low and
high frequency data. The decomposition can be iterated where one for example further divides
the low frequency part into four new quadrats.

 LL            LH

HL             HH

Figure 2.15: Image decomposition L: f(x, y) R: w(x, y)

Over the years wavelets have become very popular for image compression. After a wavelet
decomposition most of the energy of a picture is found in the low-low frequency zone while
the other parts only contain some limited amount of it, as most images do not contain a lot of
high frequency details. In case of lossy compression the high frequency parts can be quantized
heavily before being entropy coded. Unlike standard JPEG compression where an image is
treated and quantized in blocks, a wavelet decomposition smears out any negative effects over
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the whole image giving improved outcomes at the same compression rates. Wavelet decom-
position also has other advantages due to the very nature of basis functions which generally
give good decorrelation of data.

2.6 Filters

Using filter banks a signal can be decomposed into bands of frequencies and this is where
the usefulness of filter bank lies. The wavelet decomposing process tries to approximate the
signal with the aid of the scaling and wavelet functions. If the approximation done by scaling
filter is good then much of the signal’s energy is captured in the first low frequency zone and
many of the high frequency coefficients obtained via filtering by G(z) are close to zero. This
decorrelation of frequencies in time-domain gives a big advantage for compression purposes
as the separated parts can often each be entropy coded much more efficiently than the original
signal in one go.

Before coding the subsignals it is possible to quantize the results if one is aiming for lossy
compression. The exact coding gain depends upon the type of filters used and how well the
scaling and wavelet functions approximates the signal. Generally smooth wavelet functions
are preferred in wavelet analysis as these can then be used with all kinds of signals. Any noise
or irregularities hence directly show up in the high frequency part. This also makes it easy to
quantize the high frequency differently than the low frequency zones.

In the next chapters we will utilize a number of predesigned wavelet filters which are available
from different sources. Both orthogonal and biorthogonal filters will be used.

The first number after the name of a filter always indicate the length of the analysis scaling
filter h[n], while the second figure the length of the synthesis scaling filter h̃[n]. For orthogonal
filters the lengths are equal and the second number is dropped.

The orthogonal filters we will use are:

• Haar 2: This is the classical Haar filter which is also used for example plots in this chapter
[3] [6].

• Daubechies: These are the popular filters designed by Daubechies, and various lengths
are available. The frequency response of these filters have the property of being max-
imum flat at ω = 0 and ω = π [6].

• Coiflet 6, 12 and Symmlet 6,12 and 16: Another group of orthogonal filters where the
extra degrees of freedom are used to increase the smoothness/make wavelets as near-
symmetrical as possible [6].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Frequency (pi)

Ma
gn

itu
de 0 1 2 3 4 5 6 7

−0.5

0

0.5

1

1.5
Scaling Function by Successive Approx.

Sc
alin

g F
un

ctio
n

x

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5
Wavelet Function by Successive Approx.

Wa
ve

let
 Fu

nc
tio

n

x

0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5
Scaling Function by Successive Approx.

Sc
alin

g F
un

ctio
n

x

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1
Wavelet Function by Successive Approx.

Wa
ve

let
 Fu

nc
tio

n

x

Figure 2.16: Daubechies 8, L: Frequency response, S/W functions: M: Analysis R: Synthesis

The frequency response of some of these orthogonal filters is shown on left (L) in figures 2.16
and 2.17. The analysis scaling filter is always shown in a solid print, the analysis wavelet filter
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Figure 2.17: Symmlet 12, L: Frequency response, S/W functions: M: Analysis R: Synthesis

always in a dash line. The analysis scaling and wavelet functions them self are in the middle
(M) while the synthesis scaling and wavelet functions are on right (R).

There is a wide variety of choices when it comes to the selection of biorthogonal filters. We have
chosen some traditional filters often used in image processing along with a few non-standard
filters:

• Crew 2-6: This biorthogonal filter was implemented by CREW [18]. Also elected by [1] to
compress MR-images.

• 5-3, 9-3 and 6-10: These filters were chosen as the winners in a study done by Villasenor,
Belzer and Liao [16].

• CDF 9-7: A filter designed by Cohen, Daubechies and Feauveau [4] which has become
very popular for use in image compression and is also used by the FBI for fingerprint
compression. Also selected as the winner by [16], additionally this filter is found in the
JPEG 2000 compression standard [10].
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Figure 2.18: CDF 9-7, L: Frequency response, S/W functions: M: Analysis R: Synthesis

• EL 12-4: Proposed by Egger and Li [8].

• Bathlets 10-10: Filters designed at Bath university, with parameter value of either 0.7 or
1.4 [11].

• Coiflet 17-11: A modified variant of the orthogonal Coiflet filters [17].
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Figure 2.19: Coiflet 17-11, L: Frequency response, S/W functions: M: Analysis R: Synthesis

• B-spline 11-5: A biorthogonal filter generated via B-Spline functions by the Uvi Wave
Matlab package 1.

1wspline(4,4)
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2.7 Entropy

Entropy doesn’t directly have anything to do with wavelets but as wavelet filter banks are often
used to decompose a signal before coding it it is natural to mention it in this context.

Entropy is used to measure the amount of information stored in a collection of data via prob-
abilistic theory. If an event E1 occurs a number of times in the data then the probability of it
happening P (E1) can be associated with units of information as I(E1) = − logP (E1). The neg-
ative sign ensures that only positive values are returned and the base of logarithm determines
the unit which is used to measure information. In case of base 2 the measurements are directly
in (digital) bits.

As long as there are a finite amount of different letters in the data a source alphabet can be con-
structed: {a1, a2, ..., aJ}. The probability that the source produces a letter aj is defined as P (aj);
while the sum will add up to one,

∑
P (aj) = 1. Combining this with the units of information

we get the average information per source e which is defined as: e = −∑P (aj) logP (aj), this
is the entropy of the data set. In case of base 2 this indicates the average number of bits required
to code a data set. A good coding algorithm should try to come as close to the entropy figure
as possible; although it is not possible to code in fewer bits than the limit given by the entropy,
a transformed data set may well have a much lower entropy. This is where wavelets come in.



Chapter 3

Biorthogonal Wavelet Filter Banks

Biorthogonal filters define a superset of orthogonal wavelet filters and have found their use in
virtually all areas where wavelets are utilized.

There are, however, certain aspects of the biorthogonal wavelet transform which can be in-
teresting to investigate. Since biorthogonal wavelet transforms obviously are not orthogonal,
it should be possible to explore the aliasing and energy shifts which occur do to the non-
orthogonality of the filters. The outcomes may give us some hints on why biorthogonal wave-
lets have been so successful till today and how they should be designed. As there is a big
variety of available biorthogonal wavelets it is not unlikely that different filters have somewhat
different properties.

We shall use a a synthetic signal of 5000 white noise samples (figure 3.1) for our experiments,
as such a signal covers the whole frequency spectrum with the energy uniformly spread out.
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Figure 3.1: test signal

3.1 Energy shifts

One of the constrains put on orthogonal wavelet filters is that when a signal is decomposed in a
low and a high frequency part then the total quantity of energy in both subbands should equal
the total amount of energy in the original signal.∑

y[k]2 =
∑

(c[k]2 + d[k]2)

Our experimental signal is built up of white noise and if we decompose it be using orthogonal
wavelets then the signal’s energy will hence be divided more or less equally between the low
and high frequency subbands.

Biorthogonal filters on the other side are much more flexible at this and the sum of energy
in low and high frequency areas may be very different from the original signal. The signal

16
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Figure 3.2: Power spectrum of test signal

decomposed using the famous CDF 9-7 biorthogonal wavelet filter is shown in figure 3.3, the
white noise in the new signal should now have become somewhat colored.
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Figure 3.3: decomposed signal

Experimenting with different filters we decompose this signal and calculate the energy in the
low and high frequency parts as well as the total energy of the signal. The outcomes are shown
in tables 3.1 and 3.2 as percentage values relative to the total energy of the original signal.

Total energy of our original signal is: 5095.76.
Fourier transform reveals that 2609.97 (51.21%) is in the low frequency part and 2485.63 (48.77%)
among the high frequencies.

Orthogonal Filter Energy L Energy H Sum
Haar 2 51.25% 48.74% 100%
Daubechies 8 50.79% 49.20% 100%
Daubechies 10 51.52% 48.47% 100%
Daubechies 12 51.79% 48.20% 100%
Daubechies 20 51.69% 48.30% 100%
Coiflet 6 51.36% 48.63% 100%
Coiflet 12 51.72% 48.27% 100%
Symmlet 6 51.74% 48.25% 100%
Symmlet 12 51.75% 48.24% 100%
Symmlet 16 51.76% 48.23% 100%

Table 3.1: Energy divisions of original signal

For orthogonal filters the outcomes are pretty much as expected. The energy is more or less
separated equally between the zones, and the total energy remains unchanged regardless which
orthogonal filter we use.

For biorthogonal filters the results in table 3.2 turn out to be very different from that under
orthogonal filters. Examining the table it is evident that biorthogonal wavelets increase the
total energy of the signal as they decompose it into low and high frequency parts. This is the
direct result of filters not being orthogonal and data gets separated in a redundanc way, albeit
the total energy increase is modest for the majority of the filters.
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Biorthogonal Filter Energy L Energy H Sum
Crew 2-6 51.25% 50.45% 101.71%
5-3 74.00% 36.58% 110.58%
9-3 73.58% 36.58% 110.16%
CDF 9-7 53.97% 47.61% 101.58%
6-10 65.44% 39.27% 104.74%
EL 12-4 103.79% 30.56% 134.35%
Bathlets 10-10 0.7 54.30% 46.06% 100.37%
Bathlets 10-10 1.4 52.41% 47.68% 100.10%
Coiflet 17-11 56.11% 45.78% 101.89%
B-spline 11-5 172.95% 26.67% 199.62%

Table 3.2: Energy divisions of original signal

Although biorthogonal filters generally seem to increase the total energy it is much more of
interest to observe that the energy located in the high frequency band is quite a bit lower than
in the case of orthogonal filters. All of the energy increase occurs in the low frequency domain;
one can say that the energy is indeed more or less shifted towards the lower frequencies from
higher frequencies. The 2-6 filter is the only filter which does not fit in with the general pattern,
a more detailed study of the filters should be able to explain the differences between filters.

In spite of the fact that biorthogonal filters increase the total energy of the signal this does not
automatically imply that the decomposed signal requires extra storage space. The number of
coefficients remains the same regardless which filter we use. Yet, if a frequency zone contains
relative few values (low energy) then compression may be performed easily and effectively.
The opposite is true if a zone contains too much energy, compression may then not be very
effective due to high degree of entropy. For compression purposes the ultimate goal is therefore
to transform a signal in a stable way so the amount of energy in low/high frequency areas is as
low as possible.

Decomposing using biorthogonal wavelets increases the total energy of an all frequency signal
in a certain way special way, however, how does low/high frequencies take part in this increase
?

One possible strategy to find this is to use a signal which only consist of low frequencies. For
example a chirp or a filtered signal so it is free from high frequencies. Opting for the second
alternative we use the Remez method to design a filter which removes all high frequencies from
our signal.
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Figure 3.4: Power spectrum of lowpass filtered signal

The filtered signal hardly contains any high frequencies as one can observe in figure 3.4. The
total energy of our lowpass filtered signal is calculated to be 2418.65. From the Fourier trans-
form it is also straightforward to compute the energy located in low/high frequency parts. The
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total energy below π
2 is 2418.51 (99.99%) and in the high frequency area: 0.14, only 0.005% of

the total signal’s power.

If we now take wavelet decompositions of this signal using different filters and calculate the
power located in the low/high frequency zones we obtain some interesting results shown in
tables 3.3 and 3.4.
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Figure 3.5: Orthogonal Daubechies 8 decomposition

Orthogonal Filter Energy L Energy H Sum
Haar 2 83.69% 16.31% 100%
Daubechies 8 93.15% 6.84% 100%
Daubechies 10 94.11% 5.88% 100%
Daubechies 12 94.83% 5.16% 100%
Daubechies 20 96.50% 3.49% 100%
Coiflet 6 89.46% 10.53% 100%
Coiflet 12 93.40% 6.59% 100%
Symmlet 6 91.68% 8.31% 100%
Symmlet 12 94.83% 5.17% 100%
Symmlet 16 95.83% 4.16% 100%

Table 3.3: Energy divisions of lowpass filtered signal

In the case of orthogonality the total energy remains unchanged and most of the energy is
found in the low frequency band. The longer the filter the less energy in the high frequency
zone. Daubechies and Symmlet filters of same length have roughly the same performance, the
Coiflet variants though are somewhat less effective at reducing the power in the high frequency
area.
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Figure 3.6: Biorthogonal CDF 9-7 decomposition

Biorthogonal wavelet filters on the other hand enlarge the total energy of the lowpass filtered
signal in the decomposing process. One can also clearly see from table 3.4 that the energy
quantity in the low frequencies is propagated while in the high frequency zone the energy is
more or less reduced compared with orthogonal filters of the same length. One can even say
that the signal’s energy is concentrated tightly over to the low frequency band.

From our tests two biorthogonal filters, 2-6 and 9-7 stand out clearly from the rest as the total
energy of the decomposed signal is in fact lower than the original signal.
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Biorthogonal Filter Energy L Energy H Sum
Crew 2-6 83.69% 8.01% 91.70%
5-3 114.83% 4.61% 119.44%
9-3 122.40% 4.61% 127.01%
CDF 9-7 91.55% 4.40% 95.96%
6-10 113.91% 3.80% 117.72%
EL 12-4 160.23% 1.53% 161.76%
Bathlets 10-10 0.7 97.98% 7.19% 105.17%
Bathlets 10-10 1.4 92.70% 9.30% 102.01%
Coiflet 17-11 97.78% 3.04% 100.83%
B-spline 11-5 208.57% 0.55% 209.12%

Table 3.4: Energy divisions of lowpass filtered signal

One can’t ignore to notice that the high frequency part accommodates quite a bit of the signal’s
power, even for orthogonal filters. This energy is more or less composed of aliasing components
which are removed when the inverse transform is applied. The majority of the selected biortho-
gonal filters are more efficient at reducing the aliasing components in the high frequency zone.

The experiments done show how a signal’s energy spreads out if a signal is only made up of
low frequencies. The next step is to find out how this occurs the other way around; if a signal
only consist of high frequencies. For orthogonal filters the aliasing should be similar to table
3.3 as the filters are symmetrical to each other, the outcomes from biorthogonal filters should
be different.

As previously, we first filter our signal, this time with the aim of removing all low frequencies
from it. The inverse filter as that used to filter high frequencies is applied and spectrum of the
new signal can be seen in figure 3.7.
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Figure 3.7: Power spectrum of highpass filtered signal

The low frequency area only accommodates about 0.01% of the total energy. As before all the
values in the tables are relative to the total energy of the original signal.

The results in table 3.5 and 3.6 follow the same pattern we have already seen. Even here biortho-
gonal filters generally enlarge the energy in the low frequency zone while the quantity of en-
ergy in the high frequency part goes through a reduction. The energy transfer is very significant
for many of the biorthogonal filters.

For orthogonal filters the aliasing is limited and follows the same symmetrical pattern we have
seen before. The energy located in the low frequency domain is much lower than for biortho-
gonal filters. One can also witness that a larger orthogonal filter works obviously much better
than a shorter filter, giving fewer aliasing components.

Comparing the three simulations it also comes out that certain biorthogonal wavelet filters
don’t simply shift the energy from high to low zones, but they also try to reduce any effect of
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Orthogonal Filter Energy L Energy H Sum
Haar 2 16.34% 83.56% 100%
Daubechies 8 6.78% 93.22% 100%
Daubechies 10 5.77% 94.22% 100%
Daubechies 12 5.05% 94.94% 100%
Daubechies 20 3.37% 96.62% 100%
Coiflet 6 10.51% 89.48% 100%
Coiflet 12 5.04% 94.95% 100%
Symmlet 6 8.25% 91.74% 100%
Symmlet 12 5.04% 94.95% 100%
Symmlet 16 4.04% 95.96% 100%

Table 3.5: Energy divisions of highpass filtered signal

Biorthogonal Filter Energy L Energy H Sum
Crew 2-6 16.34% 95.36% 111.70%
5-3 25.35% 71.89% 97.25%
9-3 15.21% 71.89% 87.11%
CDF 9-7 10.66% 95.34% 106.01%
6-10 12.63% 77.30% 89.93%
EL 12-4 30.43% 63.22% 93.65%
Bathlets 10-10 0.7 8.29% 86.98% 92.28%
Bathlets 10-10 1.4 9.81% 88.25% 98.06%
Coiflet 17-11 7.79% 93.12% 100.91%
B-spline 11-5 89.98% 56.66% 146.64%

Table 3.6: Energy divisions of highpass filtered signal

it with lower gain for the lowpass filters than for the highpass filter. This is noticeable for 2-6,
9-7 and the 10-10 1.4 Bathlet filters. From table 3.2 it is not evident that these filters increase the
energy in the low frequency part at all. Table 3.6 on the other hand reveals that there is indeed
shifting of energy to low zones which exceeds the aliasing of orthogonal filters of roughly the
same size. The only explanation for why the energy increase pretty much goes unnoticed when
a signal consist of both low and high frequencies must lay with the fact that the scaling filter for
these filters have a lower gain. Low gain for filters can be very suitable if the aim is to compress
signals.

From the experiments done so far it is already possible to make some conclusions at this point.
For our selected biorthogonal wavelet filters:

• The amount of energy among the low frequencies is increased

• The high frequencies generally get a reduction in their energy compared with orthogonal
filters

• As a corollary a signal with both low and high frequencies may get the total energy in-
creased after decomposition as the energy increase in the low frequency zone is not ne-
cessary proportional to the energy decrease in the high frequency part
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The energy of a signal can be regarded as a rough way of measuring the entropy. Low energy
in one frequency zone can therefore imply effective compression of a particular area.

The low frequency zone of a signal decomposed using biorthogonal wavelets consists of a great
deal of aliasing values which cause the energy increases. An important lesson to learn from this
is that when processing signals with biorthogonal filters one needs to be careful to ensure that
the values in the decomposed signal don’t change very dramatically. In such case the aliasing
components will not recover completely, and may distort a signal when the inverse transform
is applied. For some filters the amount of aliasing can be very large (the 11-5 B-spline filter for
instance) and when using such filters one should be aware of the negative effects.

To an lesser extent this problem is also valid for orthogonal wavelets filters as tables 3.3 and 3.5
show. For a filter with 8-10 coefficients will roughly 5% of the energy in a decomposed zone
consist of aliasing values. Wavelets filters are simply unsuitable for precise filtering operations.

One notable aspect to point out is that our results depend heavily upon the filters we have used
in our tests. For orthogonal wavelets the results represent the standard norm as the require-
ment for orthogonality does not leave much extra room for additional specialities. Biorthogonal
wavelets follow a more generalized system and although our filters more or less increased the
energy in low frequencies it is very well possible that other types of filters would do the oppos-
ite and reduce the energy in the low frequency zone. The conclusions for the high frequency
part can then just as well be the opposite of what we reached.
Even though our results are restricted to certain filters they do represent the general line in
image compression, one main area where biorthogonal wavelet filters are utilized. We could
have reached other results by selecting other filters or by just reversing the analysis and syn-
thesis filters, though, all non-orthogonal filters are likely to split the signal in a non-symmetrical
way. Whether the shifting of energy occurs towards lower or higher frequencies is though only
relevant for practical applications.

3.1.1 Non-orthogonality

The non-orthogonality of filters can directly be investigated using the standard innerproduct
formula

∑
h[k] g[k] where h[k] are the filter coefficients for the scaling filter while g[k] are

coefficients for wavelet filter. Orthogonal filters always return zero, pointing to an angle of
π
2 between the filters. This formula can’t be applied directly to biorthogonal filters as the
low/high pass filters don’t always have the same number of taps. This can be fixed by symmet-
rically zero extending the shortest filter. The angle spanned between the lowpass and highpass
filters can be found via: θ = cos−1

∑
h[k] g[k]∑

h[k]2·∑ g[k]2 .

As it turns out in table 3.7 many of these filters can be considered as being nearly orthogonal to
each other, which means that there should be little correlation between the decomposed zones
of the signal. Highly non-orthogonal transforms can be unstable but this does not seem to be
the problem with any of these filters. None of the filters have an angle above π

2 .

A direct effect of non-orthogonality can also easily be observed. Assuming that u[k] and v[k]
are the subsignals decomposed by the filters (but not downsampled) we get:

∑
(u[k] + v[k])2 =

∑
(u[k]2 + 2u[k] v[k] + v[k]2)

=
∑

u[k]2 +
∑

v[k]2 + 2
∑

u[k] v[k]

For orthogonal filters the cross sum 2u[n] v[n], ignoring any numerical discrepancies, be zero.
Non-orthogonal filters should yield some interesting results which can be related with the en-
ergy in the signal filtered with low/high pass filters.
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Biorthogonal Filter Angle in π
Crew 2-6 0.500
5-3 0.346
9-3 0.374
CDF 9-7 0.384
6-10 0.500
EL 12-4 0.500
Bathlets 10-10 0.7 0.500
Bathlets 10-10 1.4 0.500
Coiflet 17-11 0.408
B-spline 11-5 0.418

Table 3.7: Non-orthogonality

Cross sum α =
∑
u[k] v[k] relative to the total energy of the white-noise signal is in the next

table 3.8.

Biorthogonal Filter α in percent
Crew 2-6 11.91%
5-3 -5.87%
9-3 0.11%
CDF 9-7 -3.00%
6-10 4.94%
EL 12-4 -4.78%
Bathlets 10-10 0.7 0.00%
Bathlets 10-10 1.4 0.00%
Coiflet 17-11 3.08%
B-spline 11-5 17.40%

Table 3.8: Cross sum

Although many of these filters are almost orthogonal the effect of non-orthogonality is clearly
visible in table 3.8.

3.2 Filter coefficients

The empirical evidence from our tests tells us quite a bit about how orthogonal and biortho-
gonal filters separate the energy of a signal in respectively low and high frequency parts. Seen
from a more theoretical point of view the energy increases/decreases can directly be linked
with the filter coefficients. For orthogonal filters we have the requirement

∑
h[k]2 = 1 which in

frequency domain can be expanded into |H(ω)|2 + |G(ω)|2 = 2. When it comes to biorthogonal
wavelets this condition is relaxed into H(ω)H̃∗(ω) +H(ω + π)H̃∗(ω + π) = 2 [3].

Ignoring downsampling, in the continuous case the energy of the decomposed signal can be
calculated as

∫
|Y (ω)|2 dω =

∫
|X(ω)|2|H(ω)|2 dω +

∫
|X(ω)|2|G(ω)|2 dω
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=

∫
|X(ω)|2 (|H(ω)|2 + |G(ω)|2) dω

The orthogonality relation therefore implies a doubling of the energy. In the biorthogonal case
the sum |H(ω)|2 + |G(ω)|2 is non-constant and depends upon ω. The gain may be arbitrarily
distributed as long as the conditions for perfect reconstruction are satisfied. We can still find an
upper limit in the biorthogonal case by using the maximum value:

∫
|Y (ω)|2 dω ≤

∫
|X(ω)|2

(
( max |H(ω)|)2 + (max |G(ω)|)2

)
dω

=

∫
|X(ω)|2 ( max |H(ω)|2 + max |G(ω)|2 ) dω

By making use of (
∑
h[k]2)

1
2 ≤ max |H(ω)| or

∑
h[k]2 ≤ max |H(ω)|2 [13] this can be related

with the coefficients of the filters:
∫
|Y (ω)|2 dω ≤

∫
|X(ω)|2 (

∑
h[k]2 +

∑
g[k]2 ) dω

Different biorthogonal filters are likely to give different results for the sum as the energy quant-
ity in low/high frequency parts varied quite a bit during our trials in the previous section.

Biorthogonal Filter
∑
h[k]2

∑
g[k]2 Sum

Crew 2-6 1.00 1.03 2.03
5-3 1.43 0.75 2.18
9-3 1.41 0.75 2.16
CDF 9-7 1.04 0.98 2.02
6-10 1.28 0.80 2.08
EL 12-4 2.03 0.62 2.65
Bathlets 10-10 0.7 1.06 0.94 2.00
Bathlets 10-10 1.4 1.02 0.97 2.00
Coiflet 17-11 1.07 0.94 2.01
B-spline 11-5 3.28 0.54 3.82

Table 3.9: Filters’ energy

The outcomes in table 3.9 agree pretty much with our previous results. Apart from one, all
wavelet filters return a value below 1, reduction in energy; while

∑
h[k]2 is above unit value,

increasing the energy in the lowpass subband. All the filters return a net sum above or equal
to 2. A sum equal to 2 does not suggest any increase of the energy, a total above 2 therefore
hints towards some redundanc in the decomposing. The values for nearly all of our filters are
pretty close to 2, meaning that the amount of correlation and energy increase is small. The 11-5
B-spline filter is the only exception but then this filter is also a theoretical kind of filter rather
than one made for practical intentions.

Comparing table 3.9 with table 3.2 we see that they nicely fit in with each other.

From the table it’s now possible to give an explanation for the odd behavior of the 2-6 filter as
results from this filter are not always in agreement with the other biorthogonal wavelet filters.
As one can see in the table this filter does not reduce the energy in any way. The lowpass
filter maintains the original power while the high frequency zone receives some propagation.
Consequently no direct attempt is done to reduce the signal’s power in any band.
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3.2.1 Overlap

Filter coefficients directly influence on how a signal’s energy is spread during decomposing,
and virtually all biorthogonal filters in our experiments are designed so they decrease the en-
ergy in the high frequency part and increase the energy in the low frequency zone. This is
probably what distinguishes between a "good" and a "bad" biorthogonal filter for compression
purposes. A good filter should not increase the total energy too much while still reducing the
energy in one frequency zone as much as possible.
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Figure 3.8: Frequency responses of B-spline 11-5

From classical algebra we know that since biorthogonal vector spaces plainly are not ortho-
gonal there can be some correlation between vectors. As the filters are no longer orthogonal
one major effect of this is from the overlap area between the low/high frequencies. For ortho-
gonal filters the overlap period is perfectly adjusted, figure 2.12 gives precisely an example of
this. Biorthogonal filters don’t follow this ideology as one can see from table 3.9. If the overlap
period for filters is rather large then certain frequencies are captured by both filters causing
correlation and aliasing in the zones. This can be observed in figure 3.8 where the frequency
response of the 11-5 B-spline biorthogonal filter is shown. This B-spline filter has so long given
us the highest values in the tests and frequency response of this filter reveals the finer details.
The wavelet filter has a relative small gain while the scaling filter dominates, covering much of
the frequency spectrum.

Adding the frequency response of both analysis filters one ends up with a description of the
overall treatment the filters give a signal. The sum of filters magnitudes |H(ω)| + |G(ω)| is
shown in figure 3.9.
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Figure 3.9: Additive frequency response of B-spline 11-5

Subtracting the frequency response of highpass with the lowpass, and the frequency response
of the lowpass with the highpass, and making a new function out of this by only keeping the
positive values one obtains the total frequency area |N(ω)|which does not have any overlap at
all.

|N(ω)| = max( |H(ω)| − |G(ω)|, 0) + max( |G(ω)| − |H(ω)|, 0)

From the total additive frequency response |H(ω)|+ |G(ω)| we subtract this non-overlap func-
tion and end up with the total frequency part |O(ω)| which does receive an overlap.

|O(ω)| = |H(ω)|+ |G(ω)| − |N(ω)|
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Figure 3.10: Overlap area of the B-spline 11-5

The overlap period of B-spline 11-5 can be seen in figure 3.10. Almost all the high frequencies
and as well as low frequencies between [0.2π, 0.9π] receive a dose of overlapping from this filter
combination. Only the very low/high frequencies are exempted.

The 9-7 filter gives another kind of plot in figure 3.11, where the peak point is at 0.54π.
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Figure 3.11: Overlap area of biorthogonal 9-7

If we repeat the process with the orthogonal Daubechies 8 filter the total overlap area has a
slightly different shape which is symmetrical exactly in the middle at 0.50π.
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Figure 3.12: Overlap area of Daubechies 8

In the center a signal receives a unit gain from both the low and highpass filter which is also
clear from the plot. For other orthogonal filters we will acquire the same results.

This is an alternative way to look at why some biorthogonal filters shift the energy of signals in
special ways. For orthogonal filters the peak point is always in middle and frequencies under
and above π

2 obtain an equal amount of aliasing. If the aim is to increase the energy in the
low frequency subband then one can shift the overlap area towards higher frequencies. The
scaling filter can then capture more energy from the higher frequencies while the wavelet filter
is limited to certain high frequencies.

One can also observe that the B-spline 11-5 filter is not only shifted towards right but is also very
unsymmetrical. A short overlap period on one side makes sure that few frequencies from that
zone are aliased over to the other side. Additionally, the more the overlap period is towards
right, the more the scaling filter captures from the higher frequencies causing aliasing and
energy increase in the low frequency zone. The peak point of nearly all of the biorthogonal
filters used in our trials is therefore likely to be shifted towards greater frequencies.

To find more about such properties of the filters new tests were performed where we found
the extreme point of the overlap area as well as the energy below (EP−) and above this peak
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point (EP+). As the overlap area is not likely to be symmetrical around any particular point
the energies above and below the peak point can be divided with each other to get an idea
about the relationship with each other: RLH = EP−/EP+. A high value involves that the filter
pair captures most energy from the low frequencies; a small figure implies that majority of the
energy in the overlap area is located towards higher frequencies.

Orthogonal Filter Peak (π) Energy ≤ P Energy ≥ P RLH

Haar 2 0.50 1.46 1.46 1.00
Daubechies 8 0.50 0.73 0.73 1.00
Daubechies 10 0.50 0.65 0.65 1.00
Daubechies 12 0.50 0.59 0.59 1.00
Daubechies 20 0.50 0.46 0.46 1.00
Coiflet 6 0.50 1.01 1.01 1.00
Coiflet 12 0.50 0.71 0.71 1.00
Symmlet 6 0.50 0.84 0.84 1.00
Symmlet 12 0.50 0.59 0.59 1.00
Symmlet 16 0.50 0.51 0.51 1.00

Table 3.10: Peak points

Looking at table 3.10 one can confirm that there is a perfect balance between the low and high-
pass filters.

Biorthogonal Filter Peak (π) Energy ≤ P Energy ≥ P RLH

Crew 2-6 0.50 0.82 1.46 0.56
5-3 0.63 1.25 0.72 1.72
9-3 0.60 1.00 0.43 2.31
CDF 9-7 0.54 0.78 0.71 1.10
6-10 0.56 0.84 0.66 1.26
EL 12-4 0.65 0.77 0.28 2.71
Bathlets 10-10 0.7 0.51 0.82 0.78 1.05
Bathlets 10-10 1.4 0.50 0.95 0.93 1.01
Coiflet 17-11 0.53 0.64 0.51 1.24
B-spline 11-5 0.72 0.87 0.29 2.94

Table 3.11: Peak points

Unlike orthogonal filters one can not observe any kind of symmetry in table 3.11 at all. The
table shows that the 5-3 filter for example is slightly more shifted towards right than the 9-3
filter. The analysis scaling filter in the 5-3 pair should hence capture more of the high frequency
energy and result in an increase in the low frequency zone when compared to the 9-3 variant.
If we check this hypothesis with table 3.1 then we find that this is indeed the case.

3.3 Correlations

It is possible to clearly see the effects of biorthogonal filters by just examing the filters it can
also be of interest to find the correlation properties of the decomposed signals. This can be
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done via statistical methods where autocorrelation and crosscorrelation functions are used on
the decomposed signals. A crosscorrelation between the low and high frequency parts of a sig-
nal decomposed using wavelets transform describes the general dependence of low frequency
values with high frequency values. An orthogonal wavelet transform should not yield any cor-
relation but this may not be so for a biorthogonal transform according to the traditional theory
and corresponding to our results from the previous sections for some filters.

Taking autocorrelation and crosscorrelations returns new vectors, however, it is much more
convenient to have a simple numerical value as an indication of the average correlation. For
autocorrelations the average correlation length can be calculated via 1:

lc[n] =
1

rc(0)

∑

k=1

k rc[k]

where rc[n] = 1
N

∑
c[k]c[n − k] is the autocorrelation of c[n]. A low value implies low correla-

tion while a greater number indicates higher amount of correlation. Uncorrelated white noise
signals should therefore ideally have zero average length.
The average correlation length although useful may not always give us a true picture; a long
autocorrelation sequence with many small numbers can give the same result as a sequence
mostly composed of zeros but a few large values.

For crosscorrelation rcd[n] = 1
N

∑
c[k]d[n − k] between c[n] and d[n] we need other methods

as the formula above is not suitable. One possibility is to take the maximum value at any
particular lag:

max { |rcd[n]| }
The crosscorrelation coefficient can also be calculated via:

ζ = |
∑

(c[k] d[k]) / (
∑

(c[k] c[k])
∑

(d[k] d[k]) )
1
2 |

As a starting point an orthogonal wavelet transform of our test signal is taken. The autocor-
relation of both the low and high frequency zones along with a crosscorrelation can be used to
see whether any correlations show up. A figure of merit can be defined F =

ld[n]

lc[n]
which is the

average correlation length of the high frequency part divided by the average correlation length
of the low frequency part.

Our original signal only consist of 5000 white noise samples and as it turns out this is not
adequate at all to numerically estimate autocorrelations and crosscorrelations with high degree
of accuracy. A new signal with 50000 samples was therefore created for use in these statistically
oriented experiments.

Taking the new white noise signal and decomposing it using the orthogonal Daubechies 8 filter
and calculating the autocorrelation sequences of the low and high frequency zones we obtain
figure 3.3 on a normalized scale.

The autocorrelation sequences are smoothed with a Bartlett window but as expected the se-
quences do not indicate any correlation within the high and low frequency areas. To reduce
the effects of numerical errors all the values below 10% of the sequence average value are also
truncated. Even so the average correlation length then amounts to 5733.05 and 6345.48 respect-
ively for the low and high frequency sequences. Dividing the high frequency average length
with the low frequency average length we acquire F = 1.10 which is very close to one. Noise
and small correlations in the data can explain the slight off value. This figure we calculate after

1This is the discrete version of the ratio τc = 1
C(0)

∫∞
0 C(τ) dτ found in for example [14]
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Figure 3.13: L: Autocorrelation low rc; R: Autocorrelation high rd

dividing the average length of the high frequency zone with the low frequency average length
is the figure of merit which indicates the amount of average correlation. A low value close to
one points to low correlation.

The crosscorrelation between the low and high frequency decomposed parts also does not fur-
ther suggest any correlation in figure 3.14. Notice the different scaling used for crosscorrelation
plots.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
4

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 3.14: Crosscorrelation rcd

The correlation coefficients comes at ζ = 0.005; again not indicating any great degree of de-
pendency.

Let us now turn our focus from orthogonal wavelet filters towards biorthogonal wavelet filters
where more interesting results should be expected. In the first phase the 9-7 biorthogonal filter
is tested.

Repeating the identical procedure for biorthogonal filters and taking autocorrelations between
the subbands along with the crosscorrelation we obtain somewhat different results.
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Figure 3.15: L: Autocorrelation low rc; R: Autocorrelation high rd (9-7)

Figure of merit turns out to be F = 1.19, just slightly greater than 1.10 which we obtained under
the Daubechies 8 filter.

From the plot of the crosscorrelation function one can notice a few above average high values
in the middle of the plot. This indicates that there is indeed some correlation between the low
and high frequency parts of the decomposed signal at lags around 0. The absolute correlation
coefficient adds up to ζ = 0.031. This value is somewhat larger than the figure obtained with
the orthogonal filter and is also pointing towards more correlation in the biorthogonal case.

Results from further experiments are shown in tables 3.12 and 3.13. To get more accurate read-
ings for the crosscorrelations coefficients these values are calculated by taking the average value
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Figure 3.16: Crosscorrelation rcd (9-7)

over 1000 runs, where each run consisted of a different white noise sample of length 5000.

Orthogonal Filter Merit max |rLH | ζ

Haar 2 1.12 0.022 0.001
Daubechies 8 1.10 0.028 0.000
Daubechies 10 1.12 0.023 0.000
Daubechies 12 1.12 0.026 0.002
Daubechies 20 1.12 0.024 0.002
Coiflet 6 1.10 0.024 0.001
Coiflet 12 1.11 0.025 0.000
Symmlet 6 1.11 0.023 0.001
Symmlet 12 1.13 0.023 0.001
Symmlet 16 1.12 0.023 0.000

Table 3.12: crosscorrelations

Biorthogonal Filter Merit max |rLH | ζ

Crew 2-6 1.10 0.122 0.000
5-3 2.11 0.060 0.003
9-3 2.10 0.024 0.002
CDF 9-7 1.19 0.048 0.009
6-10 1.78 0.051 0.003
EL 12-4 3.65 0.051 0.003
Bathlets 10-10 0.7 1.26 0.023 0.003
Bathlets 10-10 1.4 1.18 0.023 0.001
Coiflet 17-11 1.28 0.031 0.007
B-spline 11-5 6.59 0.130 0.052

Table 3.13: crosscorrelations

For biorthogonal filters our figure of merit for the most parts returns a larger value than for
orthogonal filters. The maximum correlation amount can also be said to be higher for some
biorthogonal filters compared with orthogonal filters. The B-spline filter gives the highest
amount for the maximum correlation while the figure of merit is also very high. This is consist-
ent with our result from for example table 3.2 and table 3.9 where this filter gave the highest
amount of net energy after signal decomposition. Looking at the crosscorrelation coefficients
one can observe that a few filters give slightly large values but even for many biorthogonal
filters the figures are moderate. The 2-6 filter gives somewhat ample value for the maximum
correlation just as in table 3.7 it also gave a large value for the cross sum.

The crosscorrelation taken between the low and high frequency part of the signal decomposed
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using the B-spline filter is shown in the next figure:
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Figure 3.17: Crosscorrelation rcd (B-spline 11-5)

In many of our experiments biorthogonal filters did not increase the total energy of the signal
by big ratios, for that reason the correlations we find here are indeed minimal. Two major
exemptions from table 3.2 are the EL 12-4 and the B-spline 11-5 filters who both increase the
energy by very noticeable figures. This shows up very clearly in this new table where the figure
of merit is indeed much higher for these biorthogonal wavelet filters than for other filters. The
5-3 and 9-3 filters can also be regarded as filters who increase a white noise signal’s energy by
around 10%, in this case the merit does stand out from the rest by higher values.

3.4 Summary

The purpose of this chapter was to investigate some properties of certain known biorthogonal
filters by means of practical experiments. Quite often regularity and the number of vanishing
moments are regarded as the most interesting aspects behind wavelet filter banks, however,
the energy shifts in biorthogonal filters also seem to play an important role. The correlation
between the decomposed signal on the other hand turned out to be minimum for the majority
of biorthogonal filters. The effects of correlations therefore do not seem to have any import-
ance when biorthogonal wavelets are preferred over orthogonal variants, the energy shifting
properties can depending upon the application have a much more noticeable function.



Chapter 4

Filter Optimization

In the preceding chapter certain properties of wavelets filters were examined and we found
that many biorthogonal wavelet filters attempted to shift the energy of a signal into the low
frequency subband. This compaction varied from filter to filter, however, the majority of filters
only tried to shift a modest fixed amount of energy from higher frequencies to the low fre-
quency zone. For optimal compression the ultimate goal should be to transfer as much energy
as possible from the high frequency zone into the low frequency area. Additionally the total
energy increase for the low frequency area should be small.

In case of biorthogonal filters it should be possible to explore the extra degrees of free paramet-
ers and construct filters optimized for moving as much energy of a signal to the low frequency
zone after a wavelet filter decomposition. This chapter will be concerned with this problem,
designing filters which would try to shift and shrink the energies of a signal.

Symmetrical biorthogonal filter banks must satisfy certain constrains placed upon them to be
called wavelet filters in the first place and also to ensure properties like perfect reconstruction
of signals. The main constrains from chapter 2 can be summed up as:

∑
h[n] =

√
2 (4.1)

∑
h̃[n] =

√
2 (4.2)

∑
h[2n] =

∑
h[2n+ 1] (4.3)

∑
h̃[2n] =

∑
h̃[2n+ 1] (4.4)

∑
h[n]h̃[n+ 2k] = δ[k] (4.5)

Equations (4.1) and (4.2) ensure the convergence of scaling and wavelets functions to a com-
pactly supported basis. For even length symmetrical filters (4.3) and (4.4) are automatically
satisfied and the sum also adds up to 1√

2
. Equation (4.5) is the key for biorthogonality, how-

ever, this also results in unlinear equations.

32
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4.1 4-4 filters

Taking (4.1), (4.2) and (4.5) one can go ahead and try to construct parameterized biorthogonal
wavelets filter with 4 taps for both the analysis and synthesis filters.

h[n] = [a b b a] h̃[n] = [c d d c]

Using the previous conditions one comes up with a non-linear system of equations:

2a+ 2b =
√

2

2c+ 2d =
√

2

2ac+ 2bd = 1

ad+ bc = 0

We have one degree of freedom in this system and it should be possible to use this to some
good effect. In many wavelets systems such liberations are used to maximize the number of
vanishing moments for wavelets filters and/or to make the frequency response as flat as pos-
sible. Smooth wavelets are generally considered very important but as we only have one degree
of freedom it could be better to use this for other purposes than maximizing the numbers of
vanishing moments. By fixing a one can directly compute the figures for the other coefficients:

b =
√

2−2a
2 , c = a

2
√

2a−1
, d =

√
2

2 − a
2
√

2a−1

The highpass filters g[n] and g̃[n] can easily be found by inverting the lowpass filters as they
are crossrelated with each other. By varying a one ends up with different biorthogonal wavelet
filters each with different properties. It is also possible to use the free variable to place a zero
point for the analysis scaling filter at an arbitrary place z0 on the complex plane; taking z-
transform of h[n] gives: a + bz−1

0 + bz−2
0 + az−3

0 = 0. As we also have (4.2) to think about we
end up with a linear system which must be solved to obtain coefficients for the analysis scaling
filter:

(z3
0 + 1)a+ (z2

0 + z0)b = 0

2a+ 2b =
√

2

From the first equation in the system it is also easy to observe that the zero point z0 can not
be placed at any arbitrary position in the complex plane unless one is willing to have complex
filter coefficients. To avoid this z0 must be restricted to the real axis line alone or be placed
somewhere on the unit circle. Some examples of the analysis scaling function and the wave-
lets generated by placing z0 at different places computed using successive approximations are
shown in figure 4.1. Setting z0 to a large positive/negative value on the real axis line makes
Haar-like filters, while by placing a zero on the left side on the unit circle very smooth analysis
wavelets can be created. The synthesis wavelet function on the other side may not reflect any
of this smoothness at all, as a matter of fact a smooth analysis wavelet function in many cases
gives a very non-regular kind of synthesis wavelet function as the coefficients are related with
each other in a negative way. Regularity, however, is not everything, for non-stationary signals
a non-regular approximation might just as well turn out to be more suitable.

As we found in chapter 3 the filter coefficients play a major role in shifting the energies of a
signal. By minimizing

∑
g[k]2 the amount of energy in the high frequency zone after a wavelet

decomposition can be reduced quite heavily. The free variable in our system is a = h[0] while
we would prefer to directly minimize the wavelet filter g[n] = [−c d − d c]. Switching the
role of the analysis/synthesis filters and moving the free variable to the synthesis scaling filter
makes it easier to solve this problem.
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Figure 4.1: Examples of 4-4 scaling and wavelet functions

This transfers the problem into minimizing the energy of ĝ[n] = [−a b − b a]; min
∑
ĝ[k]2 =

min a2 + b2 = a2 + 1
4 (2− 4

√
2a+ 4a2)

Derivation by a and setting the equation equal to 0 gives 8a − 2
√

2 = 0. The optimized value
for the function is hence a = 1

4

√
2. This gives the filter zeros at ejπ/2 and it’s conjugate value

ej3π/2; albeit it is not possible to construct h[n] out from a = 1
4

√
2 due to divisions by zero. The

total gain for g[n] is indeed minimized but at the same time the gain for h[n] is maximized to
infinity. This shows the classical dilemma between filters which are related with each other.
Low gain in one filter automatically relates over to high gain on the other.

Nevertheless, this does give us some hints on how the zero points can be placed to reduce the
gain as much as possible. Due to the fact that the filters are related with each other the value
a = 1

4

√
2 is equivalent with a zero in the lowpass filter h[n] at ej0. A zero around 1 ensures

that the scaling filter captures as much energy as possible from the higher frequencies and the
wavelet filter has a low gain as possible. In figure 4.2 the effect of placing a zero point relative
close to 1 on ej0.1π and at a distance apart at ej0.25π can be seen. The increase in the lowpass
filter’s total gain is quite large. For best results a compromise must be obtained which should
ideally be suited to each particular signal.
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Figure 4.2: Frequency responses of low (solid) and highpass (dashed) filters

For a = 1
4

√
2 we find

∑
ĝ[k]2 = 0.5, which is the lowest achievable coefficients energy for

this kind of filter. This is though useless so rather than minimizing
∑
ĝ[k]2 another option is

to minimize the sum of the filters coefficients energy
∑

(h[k]2 + g[k]2). As all the coefficients
depend solely upon a minimizing is straightforward: min a2 + b2 + c2 + d2 : (a2 + b2 +

c2 + d2)′ = 4a−
√

2− 8
√

2a2+4a
(8a2−4

√
2a+1)2

+ 2
8a2−4

√
2a+1

= 0

From the real extrema points a = 0 and a =
√

2
2 we get orthogonal Haar filters! This should not

come as a total surprise as orthogonal wavelets obeying Parseval theorem preserve the energy
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of the signal after decomposition. The filter’s energy sum likewise gives the standard result:∑
(h[k]2 + g[k]2) = 2.

The two procedures gone through above to minimize
∑
g[k]2 and

∑
(h[k]2 + g[k]2) are very

general and both try to reduce the overall gain of the filters to achieve best possible outcomes
for all kinds of signals.

If the aim is to transfer all of a given signal’s energy to the low frequency subband then it should
be possible to explore the structure of the signal and place the zero points of the wavelet filter
at exactly the same frequency locations as the frequencies which dominate in the signal. The
highpass wavelet filter is then not able to capture these elevating frequencies while the lowpass
filter is forced to approximate them.

Wavelet filters with 10 taps have 4 degrees of freedom, two of them can for example be used
to place zeros in the wavelet filter while the other free variables are used to dampen the gain
of the scaling filter. Even longer filters give more flexibility but with this kind of setup one is
definitively moving far away from the traditional multiresolution view of wavelet analysis.

For our 4-4 filter we only have one degree of freedom and this can be used to place a zero point
in the wavelet filter around the dominating frequency in a signal. An artificial signal with one
low frequency at 0.2π and an high frequency of 0.7π was created to test how this method of
nulling certain frequencies can work. The signal and it’s power spectrum are shown in figure
4.3 and 4.4 respectively.
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Figure 4.3: test signal P1
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Figure 4.4: power spectrum of P1

For the analysis wavelet filter we decide to place a zero at 0.7π and as one can observe from
the plots of frequency responses in figure 4.5 this has certain drawbacks. Although the wavelet
filter does not capture much of the dominating high frequency it still grabs quite a lot from the
lower frequencies. The overall net result can hardly be better than the traditional filters.
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Figure 4.5: Frequency responses of low (solid) and highpass (dashed) filters



CHAPTER 4. FILTER OPTIMIZATION 36

Calculating the energy of the decomposed signal’s low and high frequency zones we find that
this is indeed the case. Table 4.1 shows the result along with the outcomes from the more
traditional filters.

Filter Energy L Energy H Sum
4-4, z = ej0.7π 50.48% 54.72% 105.20%
Daubechies 8 51.72% 48.27% 100%
CDF 9-7 48.99% 50.97% 99.96%

Table 4.1: Energy divisions of test signal P1

The wavelet filter obviously needs more damping around the lower frequencies.

4.2 6-6 filters

The same methods as applied in the previous section can be extended to create a 6-6 biortho-
gonal wavelet system. With 6 filter coefficients two extra degrees of freedom is available, giving
more flexibility. Learning from the previous results we this time place both the free variables at
the synthesis lowpass filter rather than the analysis scaling filter.

h[n] = [k l m m l k] h̃[n] = [a b c c b a]

Keeping a and b fixed the value for c can be calculated to be c =
√

2
2 − a − b. Using equations

(4.2) and (4.5) it is easy to find that we must solve the following linear system to obtain the
coefficients for the analysis lowpass filter h[n]:

2 k + 2 l + 2 m =
√

2
2
b (b2 − a2) l+ 2c m = 1

c
b (b− a) l+ (a+ b) m = 0

Rather than experimenting with a and b it is easier to use the free variables to directly place
two zero points z0 and z1 at given places on the complex plane. In this case the coefficients for
filters also always end up being real if the location of zero points is conjugate symmetrical.

To place the zero points at z0 and z1 for the synthesis lowpass filter another linear system must
be solved, which can return the coefficients for h̃[n]:

2a+ 2b+ 2c =
√

2

(z5
0 + 1)a+ (z4

0 + z0)b+ (z3
0 + z2

0)c = 0

(z5
1 + 1)a+ (z4

1 + z1)b+ (z3
1 + z2

1)c = 0

Since the zeros are placed at the synthesis scaling filter h̃[n] they are negative conjugate sym-
metrical to the zero points for the analysis wavelet filter g[n] as the filters are inverse related
with each other.

We can now re-run our previous experiment with 6-6 filters where as well as nulling out 0.7π
we also place a zero in the wavelet filter at 0.2π; the dominating low frequency in the signal.
This extra zero should improve the performance of the wavelet filter to some extent. Looking
at the frequency response of the optimized filters (figure 4.6) the large gain in the scaling filter
none the less is most noticeable.
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Figure 4.6: Frequency responses of low (solid) and highpass (dashed) filters

Filter Energy L Energy H Sum
6-6, z0 = ej0.2πz1 = ej0.7π 2228.38% 0.13% 2228.51%

Table 4.2: Energy divisions of test signal P1

In table 4.2 one can see that the wavelet filter is very successful at contracting the quantity of
energy in the high frequency domain but the over 2000% energy increase in the low frequency
subband doesn’t looks so attractive. This at least does show that it is possible to construct
adaptive wavelet filters which can reduce the total energy in one frequency zone to a bare
minimum.

The large gain in the scaling filter can be reduced if we put more zero points around the middle
frequencies. One can increase the length of the filters and try to use the extra degrees of freedom
for the scaling filter. However, as we now already have an acceptable working wavelet filter all
the focus can be turned over to the lowpass filter and the length of the scaling function alone
can be increased.

One important desirable property which we have ignored so far concerns the smoothness of
our wavelets. Highly non-smooth functions can distort a signal quite dramatically during nu-
merical quantization processes.

Using the recursive equations the scaling and wavelet functions for both analysis and synthesis
can be computed, for the optimized 6-6 filter pair they are shown in figure 4.7.
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Figure 4.7: Scaling and Wavelet functions, L:Analysis R:Synthesis

The analysis wavelet and synthesis scaling functions are reasonably smooth but the counter
functions are showing a totally different picture. We see a very high frequency pattern in them
which is a direct result of our attempts to force the scaling function to approximate special fre-
quencies. The biggest disadvantage with φ(t) and ψ̃(t) is the instability, resulting in exceedingly
enlarged values as the cascade algorithm iterates.

The functions generated via h[n] can make use of some more regularity and the substantial
values need to be reduced as well as. As the large values are related with the high gain in the
filter’s frequency response this can be reduced by placing more zero-points while regularity
can be increased by demanding[3]: ∑

nK g̃[n] = 0 (4.6)
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For K = 0 this equation must be satisfied in order to generate proper wavelet filters while for
odd length filters it is automatically required to be satisfied for K = 1 due to (4.3) and (4.4).
Increasing the regularity of filters and adding extra equations up to K = 2 or K = 3 should
improve the regularity.

4.3 26-6 filters

Keeping the 6-part fixed we now increase the length of h[n] directly to 26. This gives 5 extra
degrees of freedom for the lowpass analysis filter and one can use them both to increase the
regularity and set extra zero points at various positions. A filter of length 26 is quite large
although the average numbers of coefficients for this system is no more than 16, which is a
little less dramatical.

Assuming the analysis scaling filter has a format like
h[n] = [k l m n o p q r s t u v w w v u t s r q p o n m l k]

the linear system which must be solved to make this is a proper wavelet system is:

2k + 2l+ 2m+ 2n+ 2o+ 2p+ 2q + 2r + 2s+ 2t+ 2u+ 2v + 2w =
√

2

2a u+ 2b v + 2c w = 1

a s+ b t+ c u+ c v + (b+ a) w = 0

a q + b r + c s+ c t+ b u+ a v = 0

a o+ b p+ c q + c r + b s+ a t = 0

a m+ b n+ c o+ c p+ b q + a r = 0

a k + b l + c m+ c n+ b o+ a p = 0

(c− bc
a ) k + b m+ a n = 0

We have a total of 13 variables and 8 equations above, hence 5 free parameters. There are many
different ways one can utilize the freedom of this system, the most simple method is to simply
place zeros arbitrary on the unit circle and try to reduce the scaling filters high gain.

Placement of a zero at z0 gives arise to a new equation:

(z25
0 + 1) k+ (z24

0 + z0) l+ (z23
0 + z2

0) m+ (z22
0 + z3

0) n+ (z21
0 + z4

0) o+ (z20
0 + z5

0) p+(z19
0 + z6

0) q+
(z18

0 + z7
0) r + (z17

0 + z8
0) s+ (z16

0 + z9
0) t+ (z15

0 + z10
0 ) u+ (z14

0 + z11
0 ) v +(z13

0 + z12
0 ) w = 0

We can use five forms of the above equation with different zero points and try to observe the
effects of this. If we for example just place some zeros at ej0.1π , ej0.4π, ej0.6π, ej0.85π and ej0.9π

then one is covering pretty much of the frequency area and this may help reducing the filter’s
overall gain. This method, however, fails badly and we get a matrix which is very close to being
singular. The coefficients we end up with are therefore very large and completely unusable.

4.3.1 Minimizing
∑
h[n]2

An alternative to manually positioning zeros is to use an optimization method and reduce the
energy of

∑
h[n]2 to a minimum. There are many different optimization techniques available

and variants of sequential quadratic programming [2] can be used for such problems. A filter
with low coefficient energy is hence constructed.
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Using the 8 previous equations we let the optimization routine select the free variables in the
best possible way. Solving min

∑
h[n]2 numerically with the 8 given constrains we obtain a

scaling filter which for the most part does have a low overall gain:
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Figure 4.8: Frequency responses of optimized low (solid) and highpass (dashed) filters

This scaling filter still has a large gain at 0.7π which is a disadvantage as half of our signal con-
sist of this frequency. After decomposing our signal with this optimized filter we find that the
energy increase in the lowpass zone is still substantial although better than with our previous
6-6 filter.

Filter Energy L Energy H Sum
26-6, Optimized1 2203.50% 0.13% 2203.64%

Table 4.3: Energy divisions of test signal P1

The problem with optimizing
∑
h[n]2 is that this is totally independent of the signal itself, and

the gain at 0.7π has a magnitude of 9.02. For our purpose we would prefer a low gain at the
dominating frequencies; at both 0.2π and 0.7π.

4.3.2 Minimizing max |H(ω̂)|

As the filters return a very large gain at certain frequencies one can concentrate on this alone
and attempt to reduce the maximum value |H(ω̂)| ever obtains. Changing to this optimiza-
tion criteria and solving this numerically we find that the new analysis scaling filter is not so
dramatically different though. The maximum magnitude gain is just a little lower at 8.92.
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Figure 4.9: Frequency responses of optimized low (solid) and highpass (dashed) filters

Decomposing the artificial signal one finds a little improvement (table 4.4).

Filter Energy L Energy H Sum
26-6, Optimized2 2196.31% 0.13% 2196.45%

Table 4.4: Energy divisions of test signal P1
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4.3.3 Minimizing with |H(ω̂0)| ≤ r

So far the methods have only tried to minimize with regards to the filter coefficients without
directly considering the signal itself. If one therefore adds an extra inequality to the system such
as |H(0.7π)| ≤ 4 then the gain at this dominating frequency can be decreased quite heavily. If
necessary, one can even put such limits upon other frequencies such as |H(0.2π)| ≤ 4 as well
as. Nevertheless, the major drawback with this method can be severely increased gain at other
frequencies.

Adding the extra |H(0.2π)| ≤ 4 constrain and still trying to minimize the maximum gain we
find that as expected despite low gain at certain frequencies the overall gain is very large.
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Figure 4.10: Frequency responses of optimized low (solid) and highpass (dashed) filters

This increased gain also delivers scaling and wavelet functions with infinite energy; making
such an optimization rather unpalatable. In spite of low gain at the dominating frequencies the
decomposition process gets influenced by the large gain as we see in table 4.5.

Filter Energy L Energy H Sum
26-6, Optimized3 3573.21% 0.13% 3573.35%

Table 4.5: Energy divisions of test signal P1

Much of the increase can be related to the start of the signal where the filter uses zero padding
for the signal and the noise which arises in the signal exactly at the frequency change.

There are many other variants over this contraction method. One interesting alternative is to
change the minimization criteria to min (|H(0.2π)|2 + |H(0.7π)|2), even so one experiences the
same problems as above; with very large gains generally dominating the frequency response.

4.3.4 Minimizing
∑

(|X(ω̂)||H(ω̂)|)2

The best possible minimization method should take into account all of the frequencies in the
signal and construct a filter out from that which gives as low gain as possible so the decom-
posed signal’s energy is minimized.

Such a filter can be created if we alter the objective function into
∑

(|X(ω̂)||H(ω̂)|)2 and hence
try to minimize the energy of the signal, with discrete Fourier transform X(ω̂), multiplied with
the filter’s magnitude response |H(ω̂)|. Computationally this can be a very demanding proced-
ure as in each iteration of the optimization routine the Fourier transform of the filter must be
computed and then multiplied, but the outcomes will definitively be the best possible for that
particular signal.

If we solve the optimization problem with this technique we obtain a scaling filter with the
magnitude response as shown in figure 4.11.



CHAPTER 4. FILTER OPTIMIZATION 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Frequency (pi)
Mag

nitud
e

Figure 4.11: Frequency responses of optimized low (solid) and highpass (dashed) filter
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Figure 4.12: zero-points of scaling filter

The optimization algorithm has placed the zero points quite uniformly on the unit circle for
high frequencies while the lower frequences are more damped by having pairs of zeros situated
around the unit circle.

In our optimization context, this is the optimized analysis scaling filter suited for the test signal;
unfortunately the large gain is still a problem. The scaling and wavelet functions generated
from this filter therefore for all that have a very irregular shape and they do not converge as
observerable in figure 4.13. The energy of the analysis wavelet filter is quite low

∑
g[k]2 = 0.37,

on the other hand it is very high for the scaling filter:
∑
h[k]2 = 28.1. By zero extending the

wavelet filter at both ends it is also straightforward to determine the angle between the two
filters; and one finds that there is total orthogonality as the angle spans 0.50π. Orthogonal
projections give the best possible mean-square error reduction, which is precisely why one
obtains this result.
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Figure 4.13: Scaling and Wavelet functions, L:Analysis R:Synthesis

Although the decomposition process (figure 4.14) does shift more or less all of the signal’s
energy into the low frequency zone with indeed the best result so far, the small quantity left in
the high frequency zone plays a very crucial role.
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Figure 4.14: decomposed test signal
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Filter Energy L Energy H Sum
26-6, Optimized4 2192.04% 0.13% 2192.18%

Table 4.6: Energy divisions of test signal P1

If we for example truncate the high frequency zone and run the inverse wavelet transform then
the new signal (xr[n]) has deviations at the start / end of the signal as well in the middle which
is apparent from figure 4.15.
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Figure 4.15: reconstructed signal,
∑

(x[n]− xr[n])2 = 17.08

The noise at the beginning/end can easily be removed if we symmetrical extend the test sig-
nal before running the filter, however, the sudden noise arising from frequency change in the
middle of the signal remains a problem. More realistical signals always have certain noise in
them and a good wavelet system should be able to handle such small disturbances as we are
witnessing here. The synthesis scaling function of the system is quite smooth, one can therefore
try to increase the regularity of the analysis scaling filter.

Using equation (4.6) the regularity of the synthesis wavelet filter can be increased 4 levels by
adding 4 extra equations of the form

(−25K) k+(24K−1) l+(2K−23K) m+(22K−3K) n+(4K−21K) o+(20K−5K) p+(6K−19K) q+
(18K−7K) r+(8K−17K) s+(16K−9K) t+(10K−15K) u+(14K−11K) v+(12K−13K) w = 0

for K = 1, 2, 3 and 4. Regularity up to K = 4 gives the analysis scaling filter four extra zeros at
z = −1, on the negative side the optimization procedure is left with only one variable to play
around with.

Extra regularity increases the filter’s gain slightly (figure 4.16), still for our particular signal the
effect is pretty moderate. The supplementary zeros nicely smooth out the frequency response
at both ends.
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Figure 4.16: Frequency responses of optimized low (solid) and highpass (dashed) filter

Decomposing gives table 4.7.

Truncating the high frequency part and reconstructing gives back a signal where the mean
square error is much smaller. Visually one can also observe that the approximation in the
start/middle/end of the signal is much better (figure 4.17) compared to our previous filter
with no regularity (figure 4.15).



CHAPTER 4. FILTER OPTIMIZATION 43

Filter Energy L Energy H Sum
26-6, Optimized5 2202.35% 0.13% 2202.49%

Table 4.7: Energy divisions of test signal P1
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Figure 4.17: reconstructed signal,
∑

(x[n]− xr[n])2 = 5.98

The scaling and wavelet functions generated from h[n] (figure 4.18) are now more regular and
have a somewhat different shape but they still do not show convergence to a stable basis.
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Figure 4.18: Scaling and Wavelet functions

The smoothness goes pretty much unnoticed in the plots as the high frequency structure totally
dominates both the scaling and wavelet functions. In a practical situation one of course does
not totally truncate one frequency area as we have done, but as it is known that only a limited
amount of energy is found there it should be possible to quantize the data there much more
strongly gaining noticeable entropy reductions on the high frequency side.

4.4 Generalized optimized filters - type A

To generate analysis wavelet filter we have, till now, manually placed zero points at the dom-
inating frequencies. To increase the flexibility even the wavelet filter needs to be constructed
in a more proper mathematical fashion. A similar procedure as used previously to design the
scaling filter can be followed to construct wavelet filters which would grab as little energy as
possible from the signal x[n]. In other words we minimize

∑
(|X(ω̂)||G(ω̂)|)2 to construct the

wavelet filter.

A general two-fold procedure for the total algorithm can look like this:

• min
∑

(|X(ω̂)||G(ω̂)|)2

to create the wavelet filter subject to equations (4.2), (4.4) and any extra smoothness by a
form of (4.6)

• min
∑

(|X(ω̂)||H(ω̂)|)2

to construct the scaling filter with respect to the wavelet filter and equations (4.1), (4.3),
(4.5) along with the desired regularity (4.6)
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The optimization routine needs to be run twice to find the solutions, first to design the wavelet
filter and then the scaling filter. The constructed filters will be optimal in the sense of shifting
as much of the signal’s energy as possible to the low frequency subband, and the energy in
high frequency zone is shrunk. In the above algorithm the Fourier transform of signal/filters
needs to be computed which requires time-consuming complex arithmetic. An alternative op-
timization strategy is therefore to directly filter the signal with the coefficients and go straight
towards computing the energy of the decomposed signal which is then used as the objective
function. I.e.:

• min
∑
d[n]2

minimize energy in the high frequency zone to build g[n] and then

• min
∑
c[n]2

find h[n], so energy in the low frequency zone is contracted

An one-sided wavelet transform is a very fast operation, the main burden therefore comes on
the optimization algorithm. Variant of Gauss-Newton’s method can converge very rapidly and
the end results are quite similar to the one we obtain via direct Fourier energy minimization,
especially if the number of samples in time and frequency domain match each other. Start-
ing values for the optimization can be chosen as perturbations of −0.1 and 0.1 which gives
reasonably quick convergence.

The analysis scaling and wavelet filters generated by the above routines can be shown to be
orthogonal to each other:

The problem of minimizing the energy of c[n] and d[n] can be considered as two least square
problems, assuming both h[n] and g[n] are of even length. First we want to reduce the norm of
d[n] which is basically the result of a convolution:

d[n] =
∑
k g[k]x[n− k] =

∑
k x[k]g[n− k]

By placing the signal x[n] in a matrix, row-by-row where each row is translated, this can be
formulated as: d = Xg. The goal is to reduce
||r1|| = ||Xg + x||. The least square solution r1 is orthogonal to the range of matrix X,X∗r1 = 0.

For the analysis scaling filter we have a similar case:
c[n] =

∑
k h[k]x[n − k] =

∑
k x[k]h[n − k] or c = Xh. The optimal solution which reduces the

energy ||r2|| = ||Xh− x|| is also orthogonal to the signal space. Consequently we get r1⊥X∗

and r2⊥X∗. Unless r1 = r2 we can conclude that r1⊥r2 and this can only be the case when the
filters them self h[n] and g[n] are uncorrelated.
The down-sampling has been ignored in the above but this can be incorporated in the matrix
X itself. Odd length wavelet orthogonal filters are not possible [6] so in that case we end up
with a contradiction, however, the best solution must be be as near orthogonal as possible. 2

To investigate more about these optimized filters and see the practical effects of filters al-
gorithms were designed to construct optimized filters of different lengths, given a signal.

We concentrate upon the following filters (descriptions relative to the analysis side):

• 10-6: 2 degrees of freedom for the wavelet filter and 1 free variable for the scaling filter

• 15-9: 3 degrees of freedom for the wavelet filter and 1 free variable for the scaling filter

• 26-6: Here we have 2 degrees of freedom for the wavelet filter and 5 degrees of free-
dom for the scaling filter, however, we increased the regularity of thescaling filter by one
degree
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• 26-6R: A regular filter variant of the 26 filter above. The regularity will be increased by 4
degrees, leaving only 1 free variable to the optimization routine

• 34-6: The wavelet filter is the same as in other cases, but we have 7 free variables to play
with in h[n]/g̃[n]. We take up 3 of them to add extra regularity

All the free variables are used by the optimization algorithm to compact as much energy in the
first coefficients of a wavelet decomposition.
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Figure 4.19: test signal P2

To test the filters a new artificial signal was created composed of the original testing signal from
previous chapter (figure 3.3) which was combined with the two frequency signal P1 (figure 4.3).
The signal and it’s Fourier transform are in figure 4.19. This is a basically P1 where the whole
frequency spectrum is covered to some level. 49.38% of the signal’s energy is found in the lower
frequency half while the rest 50.61% is in the higher frequency spectrum.

We decomposed this signal with the optimized filters, and found how much of the original sig-
nal’s energy was distributed in different zones. The percentage results relative to the original
signal’s energy are in table 4.8. Additionally we also calculated the entropy of the decomposed
signal assuming 3 digits after the decimal were stored; these are shown in brackets. The right-
most column shows the average entropy (ē) counts. For the original signal the entropy turns
out to be 11.49.

Biorthogonal Filter Energy L Energy H Sum (ē)
10-6 3229.89% (11.21) 5.28%(10.39) 3235.18% (10.80)
15-9 27566.32% (11.24) 3.54% (10.22) 27569.86% (10.73)
26-6 2196.06% (11.22) 5.28% (10.39) 2201.34% (10.80)
26-6R 2805.45% (11.21) 5.28% (10.39) 2810.74% (10.79)
34-6 1688.66% (11.21) 5.28% (10.39) 1693.94% (10.80)

Table 4.8: Energy divisions of signal P2

How does these signal specific filters compare with more standard filters ? The results of the
same signal decomposed with three orthogonal and four biorthogonal variants are shown in
table 4.9.

There is no doubt about that the filters we have designed are quite good at shifting as much
energy as possible of a signal into the low frequency domain, however, the large increases in the
power and entropy may look problematical. Longer scaling filters are also limited in helping
reducing the gain of the frequency response. The scaling/wavelet functions furthermore are
very irregular and adding extra regularity only helps on the micro level. Small disturbances in
the high frequency zone can therefore have dramatical effects on the reconstructed signal.

Nevertheless, the minimization of energy on the high frequency part is substantial which also
results in low figures for the entropy there. The average entropy results are therefore not so
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Filter Energy L Energy H Sum (ē)
Daubechies 8 50.50%(10.78) 49.49%(10.75) 100.00% (10.77)
Daubechies 12 50.00%(10.77) 49.99%(10.74) 100.00% (10.76)
CDF 9-7 49.52%(10.82) 51.04%(10.79) 100.56% (10.80)
6-10 64.33%(10.85) 37.72%(10.74) 102.05% (10.80)
Coiflet 17-11 50.65%(10.81) 49.82%(10.78) 100.48% (10.79)

Table 4.9: Energy divisions of signal P2

bad, the best optimized filter 15-9 gives an average entropy of 10.73 which goes unmatched by
other standard filters. A large wavelet filter is of course good for the energy damping in the H
zone, however, this automatically enlarges the L area.

Repeating the same experiment with a signal (figure 4.20) where 99.66% of the signal’s energy
consists of low frequencies we get more or less similar results with large energy increases and
also reductions.
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Figure 4.20: test signal P3

The entropy of this signal is 6.62 which is small as the signal is only composed of integers.
Decomposing with the optimized designed filters gives table 4.10. The entropy counts in par-
enthesis are computed after including 1 decimal digit. The average entropy values are also in
the table on right. The traditional filters used on signal P3 are in table 4.11.

Biorthogonal Filter Energy L Energy H Sum (ē)
10-6 117.71% (7.86) 0.19%(6.32) 117.91% (7.09)
15-9 948.43% (7.93) 0.13% (6.39) 948.56% (7.16)
26-6 116.41% (7.91) 0.19% (6.32) 116.60% (7.12)
26-6R 118.59% (7.87) 0.19% (6.32) 118.78% (7.10)
34-6 116.22% (7.88) 0.19% (6.32) 116.42% (7.10)

Table 4.10: Energy divisions of signal P3

With quantization to 1 decimal digit after decomposition with the optimized filters, the quality
of the reconstructed signal (xr[n]) is somewhat acceptable and the maximum error at any posi-
tion remains below 0.25 for the 10-6 filter. The mean square error from this filter

∑
(x[n]−xr [n])2

comes at 11.33; the CDF 9-7 filter is much more stable though, and returns an error of only 0.81.
Integer quantization with the optimized filters is not to recommend.

The P3 signal more or less does not contain high frequencies, yet the optimized filters have
even further reduced any leakage which would come through the wavelet filter. The entropy
numbers are also low in that zone compared with more standard filters. All the energy and
entropy increase occur among the lower frequencies as a result of large gains in the analysis
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Filter Energy L Energy H Sum (ē)
Daubechies 8 99.38%(7.79) 0.61%(6.91) 100.00% (7.35)
Daubechies 12 99.43%(7.78) 0.56%(6.95) 100.00% (7.37)
CDF 9-7 99.09%(7.76) 0.55%(6.86) 99.64% (7.31)
6-10 100.48%(7.81) 0.47%(6.80) 100.96% (7.31)
Coiflet 17-11 99.43%(7.72) 0.52%(6.85) 99.96% (7.29)

Table 4.11: Energy divisions of signal P3

scaling filter. The 10-6 filter for example for P3 gives
∑
h[k]2 = 23.88, the wavelet filter on the

other hand gives a very low outcome:
∑
g[k]2 = 0.36. This filter though gives the best entropy

results, showing that longer filters do not necessarily do a better job.

If one looks at the average entropy values then the optimized filters can give improved effective
coding than the more typical filters. The low frequency zone indeed requires extra bits to be
coded but the high frequency zone can compensate for this growth.

The optimization routine normally converges very rapidly, however, optimized filters do not
necessarily need to be created on-line; by using average values over a particular class of signals
filters can easily be designed and stored for future use.

The Karhunen-Loève transform (KL) [9] is a statistical based transform which is optimal when
it comes to decorrelating a data set. The main disadvantage is that the basis becomes dependent
upon the signal itself. Transforming a signal via KL, however, results in maximum energy being
shifted over to the few first coefficients of the transformed signal.

The filters designed so far can therefore be regarded as approximation attempts to the KL trans-
form, though, we have no stability at all, this makes it very unpractical to for example iterate the
decomposition process on the low frequency zone or to only keep a few numer of coefficients
as an approximation of the signal.

4.5 Generalized optimized filters - type B

In the previous sections the aim was to reduce the energy of a decomposed signal’s high fre-
quency zone to a minimum. The drawback with this is that the energy amount in the low
frequency area is increased substantially and it is very difficult to depress this energy.

Although we succeeded in minimizing the energy in the high frequency zone there is not much
to cheer about when it comes to the energy propagation and the unstability of such filters.

Our former methods have been based upon a design strategy where firstly the wavelet filter
is constructed and then afterwards a scaling filter is put together. One can combine these two
procedures into one and try a different minimization criteria:

min
∑(

(|H(ω̂)||X(ω̂)|)2 + (|G(ω̂)||X(ω̂)|)2
)

In other words the aim now is to minimize the total energy of the decomposed signal. This can
also be formulated as:

min
∑

(c[n]2 + d[n]2)

The latter method, where one directly looks at the energy of the decomposed signal is a much
effective way to calculate the objective function for signals of moderate length as one avoids
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complex arithmetic computations. We name filters constructed via the above technique for type
B filters.

Regardless the method solving this kind of optimization problem demands a somewhat differ-
ent approach than the one we have been using so far. The optimization routine is only called
once and this time no attempts are made to reduce the energy amount in one particular zone
or to shift energies as much as possible. The filters within the optimization routine are still
designed in two stages; first constructing the synthesis scaling filter and thereupon creating the
opposite counterpart. This effectively reduces the filter design problem into two linear systems.
After the filter construction the value for the objective function can be found easily by a signal
decomposition and energy calculation. Finding a solution to this unconstrained minimization
problem requires an iteration process where either quasi-Newton methods or Nelder-Mead
simplex search method[2] can be applied. The type B filter construction problem is computa-
tionally more demanding than the type A filter variant as both the scaling and wavelet filters
are constructed in the same run, and the power minimization depends upon both filters.

The next section demonstrates how to construct optimized 17-11 filters, with extra regularity,
to reduce the total energy of the decomposed signal to a minimum.

4.6 17-11 filters

Filters of odd lengths give symmetrical wavelet functions and another advantage is that one
attains at least two vanishing moments automatically for both analysis and synthesis wavelet
filters.

h[n] = [k l m n o p q r s r q p o n m l k]

h̃[n] = [a b c d e f e d c b a]

Such a system gives 5 free parameters to set as we please. If we start with construction of
the synthesis scaling filter h̃[n] then 4 of the free variables are available in h̃[n] while only one
component in h[n] can be set arbitrary. a, b, c, d and k can for example be left over to the op-
timization algorithm and the end filters should be in a position to reduce the total energy of
the decomposed signal to a small amount. Here, we will however, increase the number of
vanishing moments for the filters and bring the number of free parameters down to 3.

Selecting a, b and c as the open elements and increasing the regularity by one degree, the equa-
tions for the synthesis scaling filter can be found to be:

2a+ 2b+ 2c+ 2d+ 2e+ f =
√

2

2a− 2b+ 2c− 2d+ 2e− f = 0

−102a+ (92 + 1)b− (82 + 22)c+ (72 + 32)d− (62 + 42)e+ 52f = 0

This can be looked as a 3x3 linear system as a, b and c are to be preselected by the optimization
routine.

Having constructed the synthesis scaling filter and the analysis wavelet filter :

g[n] = [−a b − c d − e f − e d − c b − a]

h[n] can be build. The equations take the form of:

2k + 2l+ 2m+ 2n+ 2o+ 2p+ 2q + 2r + s =
√

2

2k − 2l + 2m− 2n+ 2o− 2p+ 2q − 2r + s = 0

2a n+ 2b o+ 2c p+ 2d q + 2e r + s f = 1
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a l+ b m+ c n+ d o+ (e+ a) p+ (f + b) q + (e+ c) r + d s = 0

b k + c l + d m+ e n+ f o+ e p+ d q + (c+ a) r + b s = 0

d k + e l + f m+ e n+ d o+ c p+ b q + a r = 0

f k + e l + d m+ c n+ b o+ a p = 0

(c− ad
b ) l + b m+ a n = 0

162k − (152 + 1)l + (142 + 22)m− (132 + 32)n+ (122 + 42)o− (112 + 52)p+ (102 + 62)q −
(92 + 72)r + 82s = 0

These 9 equations uniquely determine the analysis scaling and synthesis wavelet filters. The
rest of the job can be left to the optimization algorithm which has to make a search to find
suitable values for a, b and c relative to the input signal.

Running the algorithm on signal P1 with starting values a = −0.1, b = 0.1 and c = 0.1 we
obtain convergence in 123 steps (309 function counts) using the Nelder-Mead routine. Gauss-
Newton’s algorithm is much quicker and converges in only 13 steps, with 118 function evalu-
ations. The resulting optimized filters’ magnitude responses are in figure 4.21 while table 4.12
shows the outcome of decomposing the signal.
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Figure 4.21: Frequency responses of low (solid) and highpass (dashed) filters

It is noteworthy that it is the scaling filter which has zeros placed very close to the dominating
frequencies rather than the wavelet filter. The roles for analysis/synthesis filters can neverthe-
less always be reversed if necessary. Upon close examination it gets apparent that the scaling
filter does not try to null out the dominating frequencies, instead the zero points are placed
extremely close to ej0.2π and ej0.7π. This is admittedly a wise strategy as we have already seen
the negative effects of totally nulling out the most influential frequencies.

Filter Energy L Energy H Sum
17-11, Optimized1 3.21% 12.41% 15.63%

Table 4.12: Energy divisions of test signal P1

The energy minimization result is no doubt a very good one considering we have had at least
over 2000% energy increases in our previous attempts. The decomposed signal with this filter
is observable in figure 4.22. The basic structure of the signal can be seen in both of the frequency
zones.

The 17-11 filter is constructed to have extra regularity for functions generated via both h[n] and
h̃[n]. Figure 4.23 shows that there is little visible effect on the standard scale despite the fact
that both h[n] and h̃[n] now end up having 4 zeros at z = −1. Although the energy of the
decomposed signal has been shrunk the gain of scaling the filter is also very large at places,
any form of quantization on the subsignals is hence a rather unstable operation.
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Figure 4.22: P1 decomposed
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Figure 4.23: Scaling and Wavelet functions, L:Analysis R:Synthesis

The energy of the analysis wavelet filter is moderate
∑
g[k]2 = 1.24, but the scaling filter shows

another side;
∑
h[k]2 = 6.66.

4.6.1 Weighted minimization

As mentioned previously the roles for analysis and scaling filters can be reversed if desired,
however, there is then still left around 3% energy in the high frequency zone. Anyway, one
can attempt to reduce the energy in the low frequency zone even further by modifying the
optimization criteria to:

min
∑

(Q c[n]2 + d[n]2) Q ≥ 1

A large Q forces the algorithm to additionally contract the energy in the low frequency area as
any energy there is given more weight than the energy in the high frequency zone d[n].

Trying this generalized method with Q = 2 and decomposing the signal with the new filter
obtained after optimization we find:

Filter Energy L Energy H Sum
17-11, Optimized2 1.27% 16.02% 17.29%

Table 4.13: Energy divisions of test signal P1

Compared with table 4.12 the amount of energy in the low frequency zone is further reduced
by half.

Increasing Q to 10 and after some adjustments of the initial values a = 0.1, b = −0.1, c = −0.1
the new optimized filters further reduce the energy in the low frequency zone (table 4.14).

Filter Energy L Energy H Sum
17-11, Optimized3 0.62% 40.70% 41.33%

Table 4.14: Energy divisions of test signal P1
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The decrease comes at the expense of the energy increases in the high frequency zone. One can
go ahead and keep enlargingQ, none the less in that event we gradually start going back to our
type A filters as with increasing Q the energy amount grows very rapidly in the high frequency
area.
If we set N to a very large number or even make it go towards infinity N →∞

min
Q→N

∑
(Q c[n]2 + d[n]2)⇒ min

Q→N

∑
Q c[n]2 = min

∑
c[n]2 ⇔ min

∑
(|H(ω̂)||X(ω̂)|)2

This optimization cost function is identical to the one for type A filters. A benefit of this weight-
ing method is that all the filters are constructed in the same process, this can be advantageous
in certain circumstances.

4.7 Type B filters

Just like type A filters, (even length) type B filters are also perpendicular to each other, implying
that there is not any correlation between the decomposed signal. The argumentation for this
is similar to the one for type A filters. Within the optimization routine a scaling filter is fully
constructed before we one starts generating the other scaling filter pair. The minimization can
also be regarded as a least-square optimization.

To run some more experiments with filters who minimize the total energy of the decomposed
signal we constructed algorithms to generate filters of various sizes and with different number
of vanishing moments. None of these filters use any special weight consideration (W = 1); all
references are to the analysis filters:

• 6-14: 2 free variables for the scaling filter and 2 free parameters for the wavelet filter

• 9-7: 2 free variables for the wavelet filter

• 10-6: 1 free variable for the scaling filter and 2 free variables for the wavelet filter

• 10-6R: increased regularity for both the scaling and wavelet filter; leaves 1 free variable

• 15-9: 1 free variable for the scaling filter and 3 free parameters for the wavelet filter

• 17-11: 1 free variable for the scaling filter and 4 free parameters for the wavelet filter

• 17-11R: in this filter the free parameter in the scaling filter is used to increase regularity
and the same is the case for 2 of the free variables in the wavelet filter. This leaves 3 free
variables to the optimization routine

Optimizing and decomposing the all-frequency signal P2 with the filters gives table 4.15.

Comparing the table with tables 4.8 and 4.9 we see that type B filters have done a fine job in
removing the correlations as much as possible and have at least managed to reduce the energy
of the decomposed signal. The more freedom in the system, the better the energy minimization.
The entropy figures, however, are not taking part in any reduction.

It is important to point out that to really locate the global minimum value one needs to run
the algorithm a few times with different starting points. Generally just perturbing the values
between−0.1 and 0.1 may be sufficient as we don’t want our filter to be made up of large values
but a foolproof algorithm should take somewhat larger starting numbers into account.
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Biorthogonal Filter Energy L Energy H Sum (ē)
6-14 36.41% (10.76) 36.80%(10.88) 73.21% (10.82)
9-7 56.58% (10.83) 42.47% (10.78) 99.06% (10.80)
10-6 39.13% (10.86) 50.36% (10.78) 89.49% (10.82)
10-6R 50.74% (10.82) 48.49 % (10.78) 99.24% (10.80)
15-9 34.12% (10.84) 33.07% (10.77) 67.20% (10.80)
17-11 32.36% (10.85) 33.47% (10.75) 65.83% (10.80)
17-11R 47.66% (10.94) 31.54% (10.83) 79.21% (10.88)

Table 4.15: Energy divisions of signal P2

Biorthogonal Filter Energy L Energy H Sum (ē)
6-14 95.63% (7.82) 1.09%(7.17) 96.73% (7.49)
9-7 95.07% (7.82) 2.05% (7.37) 97.12% (7.60)
10-6 95.04% (7.83) 1.48% (6.87) 96.53% (7.35)
10-6R 97.74% (7.74) 1.37% (7.13) 99.11% (7.43)
15-9 93.95% (7.72) 2.05% (7.43) 96.01% (7.57)
17-11 92.37% (7.84) 1.97% (7.42) 94.35% (7.63)
17-11R 96.38% (7.80) 0.99% (7.30) 97.38% (7.55)

Table 4.16: Energy divisions of signal P3

The same experiments, this time with the more simple low frequency based signal P3 are in
table 4.16.

Signal P3 virtually only consists of low frequencies and this is obviously creating problems for
the type B optimized filters. There is already very little energy in the high frequency spectrum
and hence little to reduce in a wavelet iteration. Still the filters have managed to decrease the
total energy in all cases compared with the more typical filters (table 4.11) though the entropy
values are not at all competitive. To achieve the energy reductions some quantity of energy has
to be shifted acorss the different subbands, this gives relative enlarged entropy figures for both
zones; increasing the average entropy values. Increased regularity for the scaling filter likewise
enlarges the total energy and entropy in all cases.

4.8 Summary

In this chapter two different kinds of biorthogonal wavelet filters were designed, with the goal
of either shifting a signal’s energy to the low frequency zone or to minimize the total energy of
a signal after a wavelet decomposition.

The first method of transferring all of the energy to one zone works quite well and it should
even be possible to achieve useable results during entropy coding for certain signals without
corrupting the reconstructed data too much. The second strategy of generating filters decorrel-
ates a signal very effectively, though, the energy is spread out over both low and high frequency
zones, restricting any entropy gains.

Type A and B filters manage to do their job, however, the biggest disadvantage with both filter
types is the instability. This does not provide scaling and wavelet functions with limited energy
and restricts the level of modifications which can be done to the decomposed signal.



Chapter 5

Further Improvements

In this chapter we investigate methods to expand and improve the performance of the biortho-
gonal filters from the previous chapter. Even though the filters constructed in the last chapter
did do their job of either shifting all the energy to the low frequency zone or minimizing the
total energy; unfortunately the unstability of such filters remained a big drawback.

5.1 Increasing Stability

The filters generated so far have the very objectionable feature that the scaling and wavelet
functions keep reaching very large values, i.e. they do not have finite energy. This unstability of
scaling functions can be looked upon via the cascade algorithm, φ(j)(t) =

√
2
∑
h[n] φ(j−1)(2t−

n). We can define the inner product a(j)(k) =
∫
φ(j)(t)φ(j)(t + k) dt for each iteration step and

link a(j+1) together with a(j) with the help of a transition matrix, a(j+1) = Tha(j). The matrix
Th can be formed with the help of h[n], Th = [(↓ 2) HH∗] where H is the Toeplitz folding
matrix of the filter,

√
2Hi,j = h[i − j]. This transition matrix has at least one eigenvalue of

λ1 = 1, which can be related with the scaling filter constrain |H(π)| = 0. For a stable L2 basis∫
|φ(t) − φ(j)(t)|2 dt → 0 as j → ∞, one should further ensure that the other eigenvalues are

also limited, |λi| < 1. Additionally, the smaller these eigenvalues are the more smoothness can
be expected from the generated scaling/wavelet functions. In the biorthogonal case a separate
transition matrix Th̃ must be connected with the filter h̃[n], and ideally it too should obey the
same confinements [3][15]. The filters in the foregoing chapter do not consider the eigenvalues
at all and it’s evident that this is the cause behind the unstability.

One another alternative view to the stability problem is to look upon the filters’ energy
∑
h[n]2

and
∑
h̃[n]2. Under the optimization of biorthogonal filters in chapter 4 no limit is posed upon

these energies. By iterating the filters scaling functions are constructed but with no restrains on
the filters the scaling functions easily end up reaching substantial values.

Orthogonal wavelet filters don’t have these problems at all as the filters energy sums up to 1
giving full stability. What one can do is to add extra constrains to the optimization so the filters’
energy is kept within desired limits:

p1 ≤
∑

h[k]2 =
∑

g̃[k]2 ≤ q1 (5.1)

p2 ≤
∑

h̃[k]2 =
∑

g[k]2 ≤ q2 (5.2)

53
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It is known [13] that (
∑
h[k]2 )

1
2 ≤ max |H(ω)|which is equivalent with

∑
h[k]2 ≤ max |H(ω)|2.

Setting energy constrains is therefore identical to limiting the maximum gain of the frequency
response. With these adjustments we avoid computations of eigenvalues and can set the re-
strains directly on filters with flexibility. This setting also ensures that the optimization al-
gorithm for the most part is able to converge and find a solution, albeit it may not be mean-
square stable in the strict sense.

One can obviously also make the functions fully L2 stable by calculating the eigenvalues within
the optimization and apply constrains such as:

Th; max
i
|λi| ≤ 1 (5.3)

Th̃; max
i
|λi| ≤ 1 (5.4)

We will later see that the latter method is not very appropriate for type A filter optimization,
but it can work well under type B construction.

5.1.1 Type A-II filters

With (5.1) and (5.2) the more closer p and q are to 1 the more stability can be expected from
the wavelet system. Unfortunately this setting no doubt clashes with our optimization criteria
of shifting and minimizing as much energy as possible. Table 3.9 can perhaps be used to get
some hints on how we should select figures for p and q, but the filters we experimented with
were somewhat restrictive and maybe too stable than what is absolutely necessary. It should
be possible to further relax these filters’ limits without loosing too much on the stability part.

In type A filter design the analysis wavelet filter is first constructed and the extra constrain
p2 ≤

∑
g[k]2 will now generally increase the wavelet filter’s energy to at least p2 compared

with the original algorithm. This also implies that the results for the high frequency zone will
no longer be as good as we got under the previous chapter, to gain some stability one has no
choice but to sacrifice optimal optimization. The second phase of the algorithm where the ana-
lysis scaling filter is constructed does not need to make use of equation (5.1) as this filter can be
based upon the premisses already set by the wavelet filter, with the prime intention of minim-
izing the energy in the low frequency zone. Extra energy limits for h[n] filter may easily return
very large energy increases for c[n], while having both filter energy constrains and total energy
minimization criteria only lowers the chances of finding any optimized solution at all.
Consequently one basically only needs to add the lower part of the constrain to the optim-
ization procedures; as the analysis wavelet filter tries to minimize the energy it captures the
coefficients there will already be the small, removing the need of an upper limit.

We name type A filters with the additional energy constrain

p ≤
∑

g[k]2 (5.5)

for type A-II filters.

The main question then comes up: how do we select p for various classes of filters ? Table
5.1 shows how the 26-6 filter performs with different values of p under the two frequency P1
signal.

The first thing we notice is that the roles for scaling and wavelet filters are reversed in regard
to what we would prefer but this is only a minor nuisance. Full optimization with no energy
constrain on the filters would give us (p) =

∑
h̃[k]2 = 0.37. As we keep increasing p the low
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p
∑
h2 /

∑
h̃2 max |λ|h /|λ|h̃ max |φ(t)| / |φ̃(t)| Energy L Energy H Sum

0.70 3.12 / 0.70 3.94 / 1.00 20560.08 / 0.71 1.64% 27.27% 28.91%
0.90 2.13 / 0.90 2.54 / 1.00 288.53 / 1.38 1.17% 38.08% 39.25%
1.00 1.86 / 1.00 2.16 / 1.00 64.35 / 3.86 1.03% 43.31% 44.35%
1.10 1.66 / 1.10 1.88 / 1.00 18.43 / 10.98 0.93% 48.47% 49.41%
1.15 1.57 / 1.15 1.77 / 1.00 10.64 / 18.06 0.89% 51.02% 51.91%
1.20 1.50 / 1.20 1.67 / 1.00 6.42 / 29.08 0.85% 53.55% 54.41%
1.30 1.38 / 1.30 1.50 / 1.00 2.65 / 70.73 0.79% 58.58% 59.38%
1.50 1.19 / 1.50 1.25 / 1.17 0.74 / 335.68 0.69% 68.51% 69.21%
1.70 1.06 / 1.70 1.07 / 1.37 0.42 / 1259.39 0.62% 78.30% 78.93%
2.00 0.92 / 2.00 1.00 / 1.66 0.31 / 6677.75 0.54% 92.79% 93.33%

Table 5.1: Type A-II 26-6 filter on signal P1

frequency part gradually starts to loose energy while the energy in the high frequency zone is
enlarged. The maximum values for the eigenvalues and scaling functions (20 iterations) follow
the same pattern. A small p gives a very large analysis scaling function while the synthesis scal-
ing function is very small. A large p on the other hand gives minute analysis scaling functions
with small eigenvalues for Th, however, that results in larger eigenvalues for the synthesis
scaling filter’s matrix Th̃. Increasing p further would simply lead us back to our type A kind of
filters with very large values for the synthesis scaling filter. Extreme values are good at decor-
relation but moderate values are more suitable for stability. As we see it is not possible to make
both filter pairs steadfast at the same time by this method.

The method of putting energy constrain is still quite good at reducing the maximum value the
scaling functions obtain under a limited number of iterations. Out from the table p = 1.125
points towards the optimum value where both scaling functions generated after 20 iterations
reach lowest maximum values. It is though necessary to point out that even here (figure 5.1)
one does not have stability in the full sense, the largest eigenvalue for Th comes at 1.83 while
for Th̃ it is 1.00. The scaling functions reaches up to 14− 15 and compared with more typical
filters this is indeed somewhat ample.

Figure 5.1 shows the frequency response of 26-6 filters with p = 1.125 and one can see that the
magnitude response of the scaling filter is like a linear line while the lowpass filter is nulling
out the dominating frequencies. This gives hints about a novel idea on how to use optimized
filters: One preconstructed static wavelet filters with somewhat linear magnitude response can
be used to capture all the frequencies in a signal while the other filter designed specifically for
the signal would null out the most influential frequencies, trying to catch as little energy as
possible.
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Figure 5.1: L: Frequency response, S/W functions: M: Analysis R: Synthesis

The scaling functions for 26-6 filter with p = 1.125 now do not grow wildly in the y-range but
the high frequency approximation still gives very irregular shapes.
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Finding a reasonable values for p by fully computing φ(t) and φ̃(t) or by using the eigenvalues
can be a very demanding procedure. The process can be speeded up by only running 3 or 4 iter-
ations but as we are talking about an optimization within an optimization these procedures can
hardly be recommended for quick processing. One can likewise question how much stability
one really needs in the case of filter banks.

5.1.2 Type B-II filters

Energy limits on filters can also be placed for the type B class of filters. The main difference
here is that one now need to use both equations (5.1) and (5.2) with upper and lower constrains
as the design procedure for these types of filters is slightly different and limits on only one filter
may not necessary have any direct impact on the other filter pair.

Type B-II filters further complicate the main issue; how do we find good values for p1, p2, q1

and q2 ? We should at least select p1 ≈ p2 and q1 ≈ q2 as this imposes equal restrictions on
both filters. Otherwise the optimization routine may simply pick the filter with lowest p1 or p2,
reduce the gain there; while increase it to maximum on the other.

Table 5.2 shows the results of the 17-11 filter on P1 where we have set p = p1 = p2 and q = q1 =
q2.

p q
∑
h2 /

∑
h̃2 max |λ|h /|λ|h̃ max |φ(t)|/|φ̃(t)| Energy L Energy H Sum

0.30 10.00 10.00 / 1.12 12.89/1.04 2.5 · 1010 / 4.22 2.84% 7.84% 10.69%
0.30 3.00 3.00 / 3.00 3.76/3.73 34605.6 / 26826.0 7.29% 9.45% 16.74%
0.30 1.80 1.80 / 1.80 1.64/1.00 10.05 / 5.07 34.40% 9.50% 43.91%
0.50 1.80 1.80 / 1.80 1.64/1.00 10.05 / 5.07 34.40% 9.50% 43.91%
0.50 1.50 1.50 / 1.28 1.73/1.02 23.24 / 4.71 9.37% 34.46% 43.83%
0.70 1.30 1.30 / 1.30 1.00/1.00 1.09 / 1.82 23.89% 25.19% 49.09%
0.80 1.20 1.20 / 1.20 1.00/2.09 1.31 / 51.83 22.34% 29.69% 52.03%
0.90 1.10 1.10 / 1.10 1.00/1.77 0.77 / 12.50 54.20% 18.21% 72.42%
0.95 1.05 1.05 / 1.05 1.00/1.00 0.99 / 1.42 40.04% 35.37% 75.41 %
0.97 1.03 1.03 / 1.03 1.00/1.00 1.02 / 1.37 43.31% 37.14% 80.45 %

Table 5.2: Type B-II 17-11 filter on signal P1

It turns out that this time, unlike type A-II filters, the lower limit doesn’t have much to say; the
optimized filter generally limit them self as close as possible to the upper constrain q. For type
B optimization setting boundaries on both filters helps reduce the large eigenvalues and one
can easily acquire full stability.

Figure 5.2 show the frequency response and scaling/wavelet functions in the case of p = 0.7
and q = 1.3.
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Figure 5.2: Scaling and Wavelet functions, L:Analysis R:Synthesis
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The functions are now strictly restricted in the y range, though both of the pairs are still very
irregular.

5.2 White noise signal

Having set stability conditions one can construct filters for the most general case: a white noise
signal. The optimized filters can then be compared against traditional filters to observe the total
improvement and the effectiveness of optimized filters.

5.2.1 A-II

Using the white noise test signal (figure 3.1) type A-II filters of various lengths can be designed
with the stability criteria of, for example p ≤ 0.92. The lower the limit the more effective the
filters, however, a larger value gives better stability.

Table 5.3 displays the eigenvalues and decomposition case for some optimized filters build
upon the white noise signal with p ≤ 0.92.

Biorthogonal Filter max |λ|h /|λ|h̃ Energy L Energy H Sum
10-6 1.00/1.00 56.02% 44.79% 100.81%
15-9 14.37/1.00 827.57% 42.62% 870.20%
26-6R 1.00/1.00 56.96% 44.79% 101.75%

Table 5.3: Energy divisions of test signal

A 6-tap filter with the selected stability condition is capable of shifting about 5% more energy
away from the high frequency subband than an orthogonal filter. The performance for the 26-
6R filter is pretty much the same as the 10-6, however, the 15-9 variant still shows unstability.
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Figure 5.3: 10-6 L: Frequency response, S/W functions: M: Analysis R: Synthesis
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Figure 5.4: 26-6R L: Frequency response, S/W functions: M: Analysis R: Synthesis

The 10-6 filter’s scaling and wavelet functions (figure 5.3) have a very squared non-smooth
shape, not very different from Haar functions. Single peaks of the functions attain large val-
ues, however, this is not too problematical as the eigenvalues of Th and Th̃ do not exceed 1.
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In other words we only have mean-square convergence, and not pointwise or uniform con-
vergence. Practically, these functions can give blocking-like effects if they are used for image
compressing [15]. The extra regularity of the 26 tap filter gives the synthesis scaling function a
refiner continuous shape than for the smaller 10 tap filter.

One can also attempt to follow the other full stabilization approach and demand that the filter’s
transition matrix do not contain any eigenvalues above 1. The constrain (5.4) can first be set
for h̃[n] when the wavelet filter is constructed, while in the second phase the condition (5.3) is
required from the scaling filter h[n].

Biorthogonal Filter Energy L Energy H Sum
10-6 NC 16.19% NC
15-9 NC 11.17% NC
26-6R NC 16.19% NC

Table 5.4: Energy divisions of test signal

As table 5.4 shows the eigenvalue restrains only work for the construction of the first wavelet
filter but they result in a convergence failure (NC) when one attempts to design the scaling
filter. Forming eigenvalue constrains is therefore definitively not an applicable method for
type A filters.

5.2.2 Weighted B-II

In the type B optimization case both the analysis and scaling filters are created in the same run;
setting maximum bounds of 1 for the eigenvalues can therefore be expected to work well with
this construction strategy. One can combine this with the weighting concept (section 4.6.1) and
use heavier loads for the high frequency zone d[n] to transfer as much energy as possible to
the low frequency zone, min

∑
(c[n]2 + Q d[n]2). One can in fact totally neglect the c[n] part,

thus removing the need of having any weights at all. By ignoring the low frequency part in
computing the objective function all of the focus of the minimization can be turned to the high
frequency zone alone. Both scaling filters are still made in the same procedure, however, we
demand nothing from the analysis scaling filter but that is’s transition matrix should not have
any eigenvalues above unity (5.3). The analysis wavelet filter must accompany this condition
(5.4) along with energy minimization of the high frequency zone: min

∑
d[n]2.

New filters were created with this slightly modified method of weighted type B optimization
and optimization / signal decomposition on the white noise signal gives table 5.5.

Biorthogonal Filter max |λ|h /|λ|h̃ Energy L Energy H Sum
6-14 1.00/1.00 64.21% 46.04% 110.26%
9-7 1.00/1.00 89.61% 38.52% 128.13%
17-11 1.00/1.00 73.03% 37.99% 111.03%

Table 5.5: Energy divisions of test signal

Finding the optimized solutions requires experimentations with different starting values to
obtain the optimum filter. However, the filters are quite good at shifting as much energy as
possible to the low frequency zone for this white noise signal. The optimized 9-7/17-11 filters
transfer respectively 9% and 7% more energy away from the H zone than the CDF / Coiflet
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filters of equal lengths (table 3.2). The cumulative energy increase with the designed filters
exceeds slightly what is normal under the traditional filters.
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Figure 5.5: 9-7 L: Frequency response, S/W functions: M: Analysis R: Synthesis
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Figure 5.6: 17-11 L: Frequency response, S/W functions: M: Analysis R: Synthesis

The functions for the 9-7 variants shows a great deal of discontinuity. This irregularity does
give the functions finite energy inL2 but there is no smoothness and one can not expect uniform
convergence. Functions for the 17-11 filter show a very different picture and are quite smooth.

Back in section 3.3 a figure of merit was defined, for the optimized 9-7 filter we obtain a notice-
able higher merit value of F = 2.51 while the 17-11 returns F = 1.99.

5.3 P2 and P3

Along with the stability and weighted type B filter concept from section 5.2.2 one can now go
back to the test signals P2 and P3. We are now in a position to shift maximum energy away
from the H zone retaining full function stability, at least in L2.

Optimizing P2/P3 under different filters with the eigenvalue constrains and then decomposing
we obtain table 5.6 (P2) while table 5.7 shows the situation for the P3 signal.

Biorthogonal Filter Energy L Energy H Sum (ē)
6-14 160.37% (11.01) 11.88%(10.58) 172.26% (10.80)
9-7 111.57% (10.96) 21.71% (10.73) 133.28% (10.85)
10-6 195.44% (11.06) 17.62% (10.63) 213.06% (10.85)
10-6R 102.30% (10.98) 25.83 % (10.64) 128.13% (10.81)
15-9 271.40% (11.08) 10.39% (10.56) 281.79% (10.82)
17-11 79.30% (10.90) 21.45% (10.76) 100.76% (10.83)
17-11R 75.64% (10.85) 25.18% (10.79) 100.83% (10.82)

Table 5.6: Energy divisions of signal P2

Comparing with tables 4.8 and 4.10 we clearly see that the energy shifting away from the H
zones is no longer as powerful as in chapter 4. On the plus side the problematical large energy
increases for the low frequency part are now absent. Judging from the traditional orthogonal
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Biorthogonal Filter Energy L Energy H Sum (ē)
6-14 101.20% (7.75) 1.00%(7.23) 102.21% (7.49)
9-7 101.56% (7.76) 0.40% (6.66) 101.96% (7.21)
10-6 101.06% (7.82) 0.39% (6.64) 101.45% (7.23)
10-6R 100.87% (7.78) 0.41 % (6.67) 101.29% (7.22)
15-9 110.49% (7.89) 0.40% (6.94) 110.90% (7.41)
17-11 102.00% (7.80) 0.46% (6.87) 102.46% (7.33)
17-11R 99.72% (7.80) 0.49% (6.69) 100.22% (7.24)

Table 5.7: Energy divisions of signal P3

and biorthogonal filters (tables 4.9 and 4.11) point of view the optimized stable filters gener-
ated still do a very noticeable better job of transferring energy to the L frequency zone. The
entropy counts for the P2 signal are not any lower, although, for P3 the average entropy has
gone through a reduction. Supplementary regularity for filters clearly helps in depressing the
entropy at the expense of lesser energy shifting.

Figures 5.7 and 5.8 show how the 10-6R filter turns out to be for P2 and P3.
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Figure 5.7: P2 L: Frequency response, S/W functions: M: Analysis R: Synthesis
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Figure 5.8: P3 L: Frequency response, S/W functions: M: Analysis R: Synthesis

Looking at the plots of the scaling and wavelet functions we see that the synthesis scaling
functions are generally very smooth. On the other hand, there is more variety over the shape
of the analysis scaling functions. The analysis scaling function and it’s wavelet pair clearly
show a high frequency pattern for the P2 signal, which is more or less an approximation of the
P2 signal itself (figure 4.19). For the P3 signal we see a brick-like pattern which resembles the
edges in P3 (figure 4.20).

5.4 Summary

This chapter introduced methods to create stable biorthogonal filters for transferring / min-
imizing the energy of a decomposed signal. Armed with the stability criterias it is possible to
design filters with acceptable properties for practical usage. For type A filters, however, strict
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stability may not always be achievable. One can therefore move over to weighted type B filter
concept and combine it with constrains on the eigenvalues, to acquire stable energy shifting
wavelet filters.



Chapter 6

Images

Till now our main focus has been on constructing optimized wavelet filters for selected signals.
In this chapter we will try to expand the same concepts to digital images.

Three selected gray-scale images of size 256x256 are used for testing purposes.

Figure 6.1: L: M1, M: M2, R:M3

The first image M1 is basically a low-frequency image (entropy 7.21 bits per pixel) while the
second picture is from a MR scan of the human brain with low and some high frequency de-
tails in it, with an entropy of 6.03 b/p. The third image M3 is an artificial image where the high
frequency pattern plays a dominating role, it also gives the largest rate of 8.44 b/p.
The difference between two images can be measured via several metrics, one alternative is the
peak signal to noise ratio (PSNR) which can be computed as PSNR = 10 log10

2552

MSE where
MSE = 1

MN

∑∑
((f(x, y) − fr(x, y))2. M and N define the size of the image, in our case

M = N = 256. A PSNR value above 32 is often regarded as if the image fr(x, y) is nearly error
free from the original f(x, y).

6.1 Type A filters, 2D extension

Traditional wavelet decomposition of two-dimensional data follows a separable method where
an image is transformed row-by-row and then column-by-column using the same filters. We
will stick to this approach, though, the filter optimization algorithms developed so far require
an one-dimensional signal (or it’s Fourier transform) as the main input data. For images the

62
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optimization criteria can easily be extended; assuming F (ω̂x, ω̂y) is the (discrete) Fourier trans-
form of the image, the two-fold strategy for type A filters becomes:

• construct the analysis wavelet filter by minimizing
∑∑ |F (ω̂x, ω̂y)|2|G(ω̂x)|2|G(ω̂y)|2 and

then

• fashion the analysis scaling filter by minimizing
∑∑ |F (ω̂x, ω̂y)|2|H(ω̂x)|2|H(ω̂y)|2

Instead of running the procedure in Fourier domain a wavelet decomposed energy reduction
method is a much better alternative in terms of speed, just as for the one-dimensional case. In
this view the filter generation process takes the following shape:

• build g[n] by minimizing the analysis wavelet filter decomposed image
∑∑

wg[n](x, y)2

• generate h[n] based upon g[n] by minimizing the analysis scaling filter decomposed image∑∑
wh[n](x, y)2

w(x, y) refers to the decomposed image and the subscript with lowercase letters indicates
which one filter participates in the decomposition. The decomposed image constructed via this
method will at least have as much energy as possible shifted away from the high frequency
quadrat. Optimization via full two-dimensional wavelet decompositions is a slow and tedious
process but nevertheless for off-line filter generating purposes it is fully executable.

Constructing optimized filters for the three test images, we decomposed them using the two-
dimensional algorithmical versions of 10-6, 15-9 and 26-6R filters; and computed how they
shifted the energies of the images, additionally the entropy values were also calculated which
are given in parenthesis. As one can observe in table 6.1 the optimized filters have done a
reasonable job and reduced the energy in the HH subimage to a minimum.

The bits per pixel values given in the right-most column ( ¯b/p) are the average entropy values
and this performance can theoretically be obtained if each zone is coded separately.

Filter Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
M1
10-6 469.84% (10.53) 0.89% (6.43) 1.25% (6.57) 0.00% (2.60) 472.00% (6.53)
15-9 635.00% (10.77) 0.82% (6.38) 1.06% (6.47) 0.00% (2.07) 636.89% (6.43)
26-6R 343.23% (10.32) 0.75% (6.33) 1.02% (6.46) 0.00% (2.60) 345.02% (6.43)
M2
10-6 570.01% (9.86) 1.62% (5.89) 1.72% (5.91) 0.00% (2.12) 573.37% (5.94)
15-9 3184.95% (11.02) 2.66% (6.29) 2.48% (6.26) 0.00% (1.59) 3190.10% (6.29)
26-6R 498.51% (9.77) 1.47% (5.82) 1.57% (5.84) 0.00% (2.12) 501.57% (5.89)
M3
10-6 3134945.3% (12.51) 1730.5% (10.02) 1730.5 % (10.02) 0.79% (4.74) 3138407.1 % (9.33)
15-9 7375.10% (11.41) 56.59% (7.83) 56.59% (7.83) 0.35% (3.76) 7488.65% (7.71)
26-6R 1644802.9% (12.57) 1242.6% (10.00) 1242.6% (10.00) 0.79% (4.74) 1647289.0% (9.33)

Table 6.1: Decomposition, energy divisions

The filters are successful in shifting energy from the HH subband but this is in fact the only
positive aspect of these filters. The situation is not satisfactory at all for the LH and HL parts
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where the filters don’t have any major impact. This shows up very clearly for the mixed-
frequency M3 image which overall obtains a very poor performance.

The images decomposed using the 10-6 filters are also shown in figure 6.2. All the decomposed
images in the text are shown in a logarithmical scale (wdisp(x, y) = log10(1 + |w(x, y)|)), on a
normal scale only features from the LL quadrat would have come forth.
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Figure 6.2: Decomposition using 10-6, L: M1, M: M2, R:M3

Variable scaling shows that despite the fact that little energy is concentrated on the high fre-
quency parts they still contain a certain degree of structure. The entropy figures given in table
6.1 are founded upon integer roundups of the decomposed image, this roundup has some neg-
ative effects which are clearly visible (figure 6.3) where the reconstructed integer quantized
images are displayed.

Figure 6.3: Integer quantization, L: PSNR=28.63, M: PSNR=30.85, R: PSNR=9.54

For all the images we observe that a high-frequency pattern have been overimposed on them,
this is due to the quantization of the HH frequency zone. The integer roundoff in LL, LH
and HL zones has very little effect and the errors in the reconstructed image can be attributed
directly to the HH part alone. The quality of the reconstructed images can be increased many
folds if we for example increase the accuracy and store 1 decimal digit for the HH zone, on the
negative side this increases the entropy quite heavily.

6.1.1 Increasing stability

The methods introduced in chapter 5 provide opportunities to make the filters more stable at
the loss of lesser energy movement away from the high-high subimage.

For type A filter the analysis wavelet filter is constructed at first and we can easily set any limit
on the energy:

∑
g[k]2 ≤ p. Setting p = 1.10 and generating optimized 10-6 filter for the images

we obtain the results shown in table 6.2.
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Filter Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
M1 98.62% (8.17) 0.16% (5.12) 0.27% (5.53) 0.06% (4.33) 99.12% (5.79)
M2 97.52% (7.19) 0.35% (4.63) 0.49% (4.84) 0.11% (3.91) 98.49% (5.14)
M3 73.80% (9.19) 8.09% (7.51) 8.09% (7.51) 9.49% (6.73) 99.49% (7.73)

Table 6.2: Decomposition, energy divisions, p = 1.10

The energy increase is now not so dramatic, though, the stability problem has not been totally
cured. Figure 6.4 shows the scaling and wavelet functions for the optimized 10-6 filter for the
M2 image.
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Figure 6.4: Scaling and Wavelet functions, L:Analysis R:Synthesis

Despite the extra constrain the long reaching values for one of the pair are still existent. They
can be reduced further by enlarging p but then the effect of energy shifting is depressed ever
more.

Apart from the various degrees of unstability the other main hindrance in our optimization
strategy can be attributed to the LH and HL zones where no direct attempts are done to min-
imize the energy. As we know from chapter 4 a wavelet filter which minimizes the energy forces
a large gain on the scaling filter. The LH and HL zones in our image decomposition process
therefore go through energy increases when the scaling filter is applied, effectively downgrad-
ing the full effect of the wavelet filter. Low energy in LH, HL and HH zones is what we should
aim for in able to hope for any coding gain with these kinds of filters. A possible method to
fix this problem is to construct all the filters in the same run, this can be accomplished by type
B filters. One can also try to move away from the traditional image decomposition of four
quadrats.

6.2 Type A filters, Three part decomposition

To reduce the contamination from the scaling filter on the LH and HL zones we propose a
three part image decomposition and optimization with two sets of type A optimized filters as
a substitute to the normal four parts quadratic image decomposition with one filter pair.

Filter optimization will now follow a new approach:

• treat the image row-by-row and construct an analysis wavelet filter gr[n] which transfers
as much energy as possible to the left side of the decomposed image; min

∑∑
wH (x, y)2

• generate analysis scaling filter hr[n] by min
∑∑

wL(x, y)2, reduce the energy of the left
zone
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Figure 6.5: Three part image decomposition

• in the second phase only focus on the left side of the image column-by-column: design
a wavelet filter gc[n] which shifts as much energy as possible to the upper-left quadrat;
min

∑∑
wHL(x, y)2

• construct the analysis scaling filter hc[n] pair by following min
∑∑

wLL(x, y)2

w(x, y) still refers to the decomposed image, while the subscript in uppercase points to different
subimages. As a result of this optimization strategy we end up with two sets of filters; one
optimized for row-by-row decomposition and the other for column-by-column separation for
the low-frequency part of the row-by-row decomposed image. Extra set of filters give us more
freedom and we also avoid contamination effects as the same filters are not executed on both
columns and rows.

New algorithms were designed to solve this kind of problem, and the results from the test runs
on the images can be seen in table 6.3. The firmness parameter p was set at: p ≤ 1.10 for both
row and column wavelet filters.
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Figure 6.6: Three part decomposition using 10-6, L:M1, M:M2, R:M3

The average entropy values in the right-most column are calculated as ¯b/p = (eLL + eHL +
2eH)/4 which yields the average number of bits required to code the integer quantized image
if the three zones are coded independently. eX refers to the entropy of zone X (see figure 6.5).
The average entropy values are now somewhat better.

In table 6.3 the energy reduction in the H area is not as good as previously for the HH zone for
the full four part decomposition but considering the LH and HH zones from table 6.2 together
then it’s apparent that this new algorithm is much better and shifts more power to the left side.
A longer wavelet filter of length 9 with one extra degree of freedom is obviously more effective
at minimizing energy in the H zone than a shorter 6-tap filter but as a disadvantage the scaling
filter then enlarges the energy of HL and LL zones.

Having transferred as much energy as possible to the LL zone we can try to quantize the high
frequency areas tightly. The images in figure 6.7 shows the case where in addition to integer
quantization over the whole image both HL and H zones are quantized to an uniform integer
interval of 5, i.e. figures in these zones get rounded up to ..,−5, 0, 5, 10, .. .
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Filter Energy LL Energy HL Energy H Sum ( ¯b/p)
M1
10-6 99.50% (8.18) 0.06% (4.34) 0.23% (4.69) 99.80% (5.48)
15-9 122.94% (9.06) 0.26% (5.49) 0.20% (4.64) 123.40% (5.96)
26-6R 99.46% (8.17) 0.07% (4.45) 0.23% (4.69) 99.77% (5.50)
M2
10-6 98.62% (9.45) 0.22% (5.70) 0.52% (3.30) 99.37% (4.89)
15-9 106.84% (7.15) 0.98% (4.34) 0.36% (4.06) 108.18% (5.40)
26-6R 98.53% (6.87) 0.23% (4.25) 0.52% (4.32) 99.29% (4.94)
M3
10-6 74.90% (9.21) 7.02% (6.43) 16.41% (6.79) 98.34% (7.31)
15-9 197478.83% (12.14) 242.30% (7.98) 15.90% (6.33) 197737.04% (8.20)
26-6R 76.79% (9.24) 8.57% (6.75) 16.41% (6.79) 101.78 % (7.39)

Table 6.3: Decomposition, energy divisions

Figure 6.7: 10-6, 5-level quantization: L: M1 (PSNR= 45.40) M: M2 (PSNR=46.53) R: M3
(PSNR=46.76)

The quality of the images even after such a 5 level quantization remains very good (figure 6.7).
The M2 image gives a PSNR of 46.53 at 3.21 ¯b/p, slightly above the CDF 9-7’s 46.28 at 3.12 ¯b/p.

The stability of the filters is reflected in the scaling functions shown in figure 6.8 for the M2
image. The right hand side represents the functions for row-by-row filtering while functions
on the left side are used to split the L subimage into HL and LL. The synthesis scaling functions
look quite similar to each other, it may therefore be possible to combine them together.
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Figure 6.8: Scaling functions, T:Analysis B:Synthesis, L:Column R:Row

For comparation purposes the outcomes from CDF 9-7 filter on the test images with three level
decomposition are in table 6.4

The results from the optimized filters compared with CDF 9-7 follow a mixed pattern. For
the M1 image the special constructed 10-6 filters do shift more energy away from the H area
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Filter Energy LL Energy HL Energy H Sum ( ¯b/p)
M1 99.55% (8.18) 0.06% (4.24) 0.93% (4.54) 100.54% (5.37)
M2 98.92% (6.77) 0.20% (4.06) 0.42% (4.17) 99.55% (4.79)
M3 77.58% (9.23) 7.10% (5.59) 14.54% (5.99) 99.22% (6.70)

Table 6.4: Decomposition, energy divisions

than the CDF filter, for the M2/M3 images we notice the opposite pattern. The stability para-
meter p was unchanged for all the test images and this flexibility has not been utilized in the
optimization.

One can therefore try to vary p and find how this influences the energy in H/HL zones and the
average entropy. This can be seen in figure 6.9 where the total energy of the H and HL zones is
shown, while figure 6.10 displays the average entropy of the decomposed images as p varies.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

p

%

M1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

p

%

M2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

160

180

200

p

%

M3

Figure 6.9: Energy H+HL, L:M1, M:M2, R:M3
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Figure 6.10: Average entropy, L:M1, M:M2, R:M3

The quantity of energy in the H/HL zones closely follows the average entropy, and for values
of p around 0.5−0.6 a minimum point can be observed where both these figures are minimized.
Such values of p, however, do not offer any stability. For that we need to increase p to values
at least nearby 1, unfortunately this then does not give favourable reductions for energy nor
entropy.

The different kinds of type A filters generated either via a direct two dimensional extension of
the one dimensional case or the three part decomposition with different filters for columns /
rows are unfortunately quite useless for practical image compression. With energy constrains
the situation can be improved, however, selecting the stability versus optimization becomes a
problem of it’s own. We will now end the discussion of type A filters and change focus to type
B filters where it will turn out that one can almost ignore the stability conditions.
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6.3 Type B filters, 2D extension

In chapter 4 type B filters were originally constructed to minimize the energy of a decomposed
signal; however, by combining this with special weights the algorithm can be turned into a
powerful energy shifting method suitable for digital images.

Just as for type A filters we can slightly modify our previous type B filter generating algorithms
to make them suitable for images. Instead of minimizing

∑
(c[n]2 + d[n]2) we now aim for

min
∑∑

w(x, y)2 = min
∑∑

(wLL(x, y)2 + wLH(x, y)2 + wHL(x, y)2 + wHH (x, y)2)

which should yield filters who shrink the energy of a decomposed image as much as practic-
able.

In chapter 4 we found that filter designed via this method shift some of the energy across
the subbands to achieve the desired goal; consequently this method was not found very well
suitable for compression purposes. In spite of this it can be interesting to observe the effects
of such energy minimization for images. Algorithmically this becomes a very time demanding
operation as the optimization routine needs to decompose an image in every iteration. The
energy of images can often reach large values, and on top of it the optimization criteria now
demands many more iterations than for type A filters implying that finding the optimized
filters will require some time.

To be able to acquire results within a decent time frame the algorithm was speeded up some-
what by slightly modifying the optimization objective function to min 10000

γ

∑∑
w(x, y)2 where

γ =
∑∑

f(x, y)2 is the power of the original image. If the tolerance levels of the optimization
routine are kept at the same level then this can be viewed as an approximation to the full optim-
ization problem where the least significant digits are discarded. This is in fact also necessary to
make sure that the large energy figures along with small filter coefficients / derivate approx-
imations do not turn the optimization into a badly scaled problem [2]. The solutions should be
accurate enough for experimental purposes at least.

Constructing optimized filters of size 6-14, 9-7 and 17-11 and thereafter running them on the
test images gives table 6.5.

Filter Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
M1
6-14 99.19% (8.13) 0.08% (4.48) 0.21% (5.05) 0.17% (4.97) 99.67% (5.66)
9-7 98.05% (8.05) 0.11% (4.82) 0.30% (5.53) 0.33% (5.55) 98.81% (5.99)
17-11 97.07% (8.00) 0.16% (5.24) 0.33% (5.78) 0.34% (5.67) 97.92% (6.17)
M2
6-14 98.14% (6.69) 0.26% (4.23) 0.49% (4.59) 0.18% (4.20) 98.14% (4.93)
9-7 94.76% (6.71) 0.37% (4.64) 0.69% (4.93) 0.79% (5.27) 96.61% (5.39)
17-11 92.95% (6.99) 0.48% (4.91) 0.72% (5.14) 0.78% (5.32) 94.96% (5.59)
M3
6-14 74.73% (9.21) 7.36% (7.14) 7.36% (7.14) 9.50% (6.31) 98.96% (7.45)
9-7 72.07% (9.17) 6.93% (6.02) 9.93% (6.02) 11.56% (5.24) 97.49% (6.61)
17-11 72.75% (9.19) 6.99% (6.42) 6.99% (6.42) 11.22% (5.62) 97.98% (6.91)

Table 6.5: Decomposition, energy divisions



CHAPTER 6. IMAGES 70

The first thing we notice is that the total energy reductions are by far impressive, none of the
filters have been able to reduce the total energy below 90%. The justification to this once again
lies with the LH and HL zones; a small gain on a wavelet filter results in a large gain on the
scaling filter which in turn contaminates the results in the mixed frequency zones, LH and HL.
The optimization routine is left with no other choice but to find a suitable compromise where
no filter plays a leading minimizing role. One big benefit of this, however, is that the filters we
obtain become very stable and the transistion matrix of the scaling filters does not return any
eigenvalues above 1.
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Figure 6.11: 9-7, L: M2 decomposed M: frequency response R: reconstructed image
(PSNR=45.05)

The image M2 decomposed using the optimized 9-7 filter is shown on left in figure 6.11, one can
witness how the HL and LH zones each capture horizontal and vertical aspects while the HH
zone mainly consists of high frequency structure. This is very much similar to how traditional
wavelet filters work. The image on right in figure 6.11 is reconstructed after quantizing the
LH,HL and HH zones to an uniform interval of 5. The entropy comes at 3.69 ¯b/p, still quite
a bit higher than the CDF 9-7 filter’s 3.07 ¯b/p under the same procedure, but it is much better
than our type A filter variants.

6.4 Weighted type B filters

The good behavior of type B filters generated in the previous section makes them good can-
didate for further work. The goal of shifting as much energy as possible to one particular zone
can hence be fulfilled if the above filters are combined with the weighted minimization concept
from section 4.6.1.

The optimization objective function to achieve this aim can be formulated as:

min
∑∑

(Q1wLL(x, y)2 +Q2wLH(x, y)2 +Q3wHL(x, y)2 +Q4wHH (x, y)2)

To make sure that most of the power falls into the LL zone we can set Q2, Q3 and Q4 to some
large values while retaining Q1 at unity.

As a starting point setting Q2 = Q3 = Q4 = 100 and generating filters under this new objective
function we obtain table 6.6. The optimizations are performed using the approximation min
10000
γ

∑∑
w(x, y)2 for reasons previously mentioned.

Looking at the table we are for the first time able to witness good results from optimized filters.
With these filters the energy is increased in the LL subimage at the cost of reduction in the HH
zone. The total energy increase is very modest and the average entropy levels are also low.
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Filter Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
M1
6-14 122.26% (9.09) 0.12% (4.97) 0.23% (5.30) 0.00% (2.46) 122.63% (5.45)
9-7 100.92% (8.34) 0.06% (4.34) 0.15% (4.77) 0.01% (3.40) 100.73% (5.21)
17-11 102.06% (8.44) 0.05% (4.29) 0.14% (4.74) 0.01% (3.25) 102.27% (5.18)
M2
6-14 100.09% (7.59) 0.29% (4.59) 0.36% (4.70) 0.02% (2.96) 100.77% (4.96)
9-7 101.71% (7.08) 0.19% (4.13) 0.27% (4.37) 0.03% (3.11) 102.22% (4.67)
17-11 105.19% (7.27) 0.18% (4.11) 0.26% (4.37) 0.02% (2.86) 105.68% (4.65)
M3
6-14 95.17% (9.42) 10.10% (7.80) 10.10% (7.80) 2.67% (6.62) 118.04% (7.91)
9-7 93.54% (9.42) 7.89% (7.06) 7.89% (7.06) 3.78% (5.82) 113.11% (7.34)
17-11 114.75% (9.56) 7.56% (6.05) 7.56% (6.05) 2.78% (4.55) 132.67% (6.55)

Table 6.6: Decomposition, energy divisions

Apart from the 6-14 filter both 9-7 and 17-11 variants give us better entropy results for M1 and
M2 than what we obtain under the standard filters (table 6.7). Comparing with the popular
CDF 9-7 and the Coiflet 17-11 we can verify that the major earnings for the optimized filters
come from the HH zone where the optimized filters outperform the standard variants.

Filter Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
M1
CDF 9-7 99.55% (8.18) 0.06% (4.24) 0.16% (4.73) 0.04% (4.07) 99.82% (5.31)
Coiflet 17-11 99.55% (8.21) 0.05% (4.23) 0.15% (4.72) 0.04% (4.02) 99.98% (5.30)
M2
CDF 9-7 98.92% (6.77) 0.20% (4.06) 0.32% (4.37) 0.08% (3.71) 99.54% (4.73)
Coiflet 17-11 99.39% (6.79) 0.19% (4.05) 0.31% (4.36) 0.07% (3.65) 99.98% (4.72)
M3
CDF 9-7 77.58% (9.23) 7.10% (5.59) 7.10% (5.59) 7.65% (5.00) 99.44% (6.35)
Coiflet 17-11 79.52% (9.23) 7.04% (5.01) 7.04% (5.01) 7.08% (4.69) 100.70% (5.99)

Table 6.7: Decomposition, energy divisions

The artificial M3 image once again is in a special position where our filters are not able to
directly compete with the traditional filters. The energy amount for optimized filters is low in
the HH zone, though, the large high frequency content does not give any entropy savings.

Optimized 6-14 filters are also not doing well for any image at all if we only look at the average
¯b/p results in the table. As the 14-tap wavelet filter has the majority of free parameters in this

system the wavelet filter gives good performance for the high frequency zone at the expense of
the mixed frequency zones. This directly results in unstability, only for the 9-7 and 17-11 filter
types the eigenvalues of Th and Th̃ do not exceed 1. Optimization with 6-14 should therefore
ideally have been performed with eigenvalue constrains.

How does these new optimized filters look like ? The frequency response of the 9-7 filter optim-
ized for the images are shown in figures 6.12, 6.13 and 6.14 along with the scaling and wavelet
functions. The filter coefficients are also provided in Appendix A. The goal of all these filter
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is the same and the 9-7 filter has only two degrees of freedom, hence the close resemblance to
each others.
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Figure 6.12: M1 L: Frequency response, S/W functions: M: Analysis R: Synthesis
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Figure 6.13: M2 L: Frequency response, S/W functions: M: Analysis R: Synthesis

Unlike many of our preceding filters the frequency response in the figures does not reach very
large values and the same is valid for the scaling and wavelet functions, although, there are a
few individual large peaks in the non-smooth functions we have L2 convergence. The max-
imum eigenvalue for all these 9-7 filters comes at 1, quantization is hence a reasonable stable
operation.

There are also similarities between the functions for M1 and M2 as both images contain a lot
of low frequency structure. The irregular functions representing the high frequency details
though are clearly different.
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Figure 6.14: M3 L: Frequency response, S/W functions: M: Analysis R: Synthesis

The M2 image decomposed using the optimized filter is on left in figure 6.15 while on right
the HL, LH and HH zones have been quantized to an uniform integer interval of 5 before
reconstruction (entropy 3.01 ¯b/p). The image’s quality remains pretty good.

One may also wonder whether it’s possible to further enlarge Q2 = Q3 = Q4 to for example
1000 or even 100000. It turns out that regarding the energy in the mixed/high frequency zones
100 times as worth as of that in the LL zone is enough for general experimental purposes and
for our images a larger value would only have effect on the decimal level. A substitute to this
weighting is to set all the values in the LL zone to zero (Q1 = 0, Q2 = Q3 = Q4 = 1), the effect
of this on the results is also minor.

Looking at table 6.6 it is moreover clear that the energy reduction in the HL and LH subimages
is non-existing, in these zones the optimized variants give very similar results to the CDF 9-
7/Coiflet 17-11 filters. We can safely conclude: what distinguishes these optimized type B
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Figure 6.15: 9-7, L: M2 decomposed R: quantized reconstructed image (PSNR=43.73)

filters from the rest is that they shift more power only from the HH subimage to the other
zones.

6.4.1 High frequency preservation

The movement of energy from the HH zone can be looked upon in different ways. Either
simply as a lossless method to code the image more efficiently; the optimized filters constructed
for a particular image or a class of images can give somewhat better coding performance as it
turned out to be the case for the M1 and M2 images.

One other way to look at the energy shifts is to realize that after moving energy from the high
frequency part one is in a position where the HH area can be quantized without that necessarily
forcing a loss to all of the high frequency structure in the image. The effect of this will be very
small on low frequency images like M1 and M2, however, the consequences should be directly
noticeable for high frequency pictures like M3.

The reconstructed image on left in figure 6.16 was first decomposed using the optimized 9-7
filters, where the HH zone was truncated. The image on right shows the resulting image where
the same procedure was performed using the CDF filter. Figure 6.17 shows a close up of the
center parts.

Figure 6.16: 9-7, HH truncation L: optimized filters (PSNR=18.89) R: CDF 9-7 (PSNR=18.83)

The PSNR values are similar, however, it is relative easy to observe that the high frequency
pattern roughly in the middle of the image has been removed leaving back an empty ’patch’
which is clearly bigger in the CDF 9-7 reconstructed image than the optimized filter’s outcome.
This, of course, comes at the expense of higher information content in the LL/LH/HL subbands
(4.41 ¯b/p) for the image on left than the one on right (3.82 ¯b/p). An optimized 6-14 filter would
give even higher entropy values but with additional preservation of high frequency patterns.
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Figure 6.17: 9-7, HH truncation L: optimized filters R: CDF 9-7

The close correspondence of the PSNR figures for the images in this case demonstrates a well
known fact that mean square estimates do not always portrait the differences very well.

6.5 Type B filters, Unequal weights

Starting with min
∑∑

(wLL(x, y)2 +Q2wLH(x, y)2 +Q3wHL(x, y)2 +Q4wHH (x, y)2) we notice
that having equal loads Q2 = Q3 = Q4 transfers energy away from the HH zone but this
does not help much to restrict energy in the HL and LH zones. This is very apparent for the
M3 image where the mixed frequency zones (table 6.6) store a great deal of energy. For such
images we can use heavier weights for the HL and LH zones to additionally depress the power
in these subbands. To experiment with this some test runs were there done utilizing different
values for the cross weights (figure 6.18).
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Figure 6.18: Different weights, L: M2 R: M3

The simulations formed 9-7 filters for both M2 and M3 images for various values of 100 ≤ Q2 =
Q3 ≤ 1000 with Q1 = 1 and Q4 = 100. As one can observe in figure 6.18, increasing Q2 = Q3

more or less helps reduce the amount of energy in the LH and HL zones (top row) for the M3
image. On the M2 image the effect is marginal. Further on, the LL zone also takes part in
the decrease. The drawback of increasing weights for the cross zones is that the power of the
high-high frequency part starts to raise (bottom row).

From the outcomes it is possible to conclude that for the M2 image the total energy of the de-
composed image remains pretty much at the same level. LargerQ2/Q3 reduce the energy in the
LL zone but any gain is destroyed by the energy/entropy augmentation in the HH subimage.

The situation is somewhat different for the M3 image as the HL and LH zone store a great deal
of the image’s power. Some enlarged energy in the HH zone can on that ground be tolerated,
at the benefit of energy savings in the LH,HL and LL zones. From the plots though, it does
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look like that there may not exist any global minimum for any given value of Q2/Q3. Table 6.8
demonstrates the case for optimized 9-7/17-11 filters with weights set up asQ1 = 1, Q2 = Q3 =
400 and Q4 = 100.

Filter Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
M1
9-7 100.10% (8.24) 0.06% (4.27) 0.14% (4.71) 0.02% (3.69) 100.34% (5.23)
17-11 101.20% (8.37) 0.05% (4.27) 0.14% (4.73) 0.01% (3.43) 101.42% (5.20)
M2
9-7 100.84% (6.99) 0.19% (4.10) 0.27% (4.36) 0.04% (3.24) 101.35% (4.67)
17-11 103.15% (7.15) 0.18% (4.09) 0.26% (4.36) 0.03% (3.03) 103.63% (4.66)
M3
9-7 74.50% (9.19) 6.93% (5.56) 6.93% (5.56) 9.60% (5.10) 97.98% (6.35)
17-11 80.69% (9.25) 6.88% (5.25) 6.88% (5.25) 7.35% (4.83) 101.82% (6.15)

Table 6.8: Decomposition, energy divisions

On M1 and M2, unequal weights do not bring any overall improvement which is only apparent
for the M3 image. In this table some energy quantity has been shifted away from the HL and
LH zones to the HH part, which does perform well for images with dominating high frequency
structure as this lowers the total energy sum.

Often natural images do not contain high frequency details of large quantity; the schemes in the
next two sections are anyway aimed primarily towards images such as M3: For high frequency
pictures one may ask about whether one can directly let the optimization routine handle the
optimization of Q2 and Q3. This is unfortunately not feasible as long as the cost functions are
the same. A solution to the problem

min
∑∑

(wLL(x, y)2 +Q2wLH(x, y)2 +Q3wHL(x, y)2 + 100wHH(x, y)2)
with constrains on Q2 and Q3:

Q2 ≥ 100, Q3 ≥ 100
is for example obviously achieved when Q2 = Q3 = 100.

6.5.1 Energy contraction

What one can attempt at, however, is to select optimized Q2/Q3/Q4 who fulfill an external cost
function; min

∑∑
w(x, y)2. This can be run as an optimization outside the main filter forming

optimization:

• find optimum values for Q2 = Q3 and Q4 to minimize∑∑
w(x, y)2 = min

∑∑
(wLL(x, y)2 + wLH(x, y)2 + wHL(x, y)2 + wHH (x, y)2)

• generate filters to satisfy
min

∑∑
(wLL(x, y)2 +Q2wLH(x, y)2 +Q3wHL(x, y)2 +Q4wHH (x, y)2)

In this heavily time consuming procedure the inner loop is used to construct filters who min-
imize the energy of the decomposed image with special weights given to certain subimages,
while the outer optimization just tries to minimize the energy of the decomposed image.

For the outer loop we also need to set constrains such asQ2 = Q3 ≥ Q4 to make sure that energy
is really shifted off these zones. By selecting symmetrical weights for the LH/HL subimages



CHAPTER 6. IMAGES 76

Q2 = Q3 we do loose some freedom, but we avoid situations where the optimization routine
can pick a very large value for Q2 in relation to Q3. This can totally destroy the energy shifting
intent behind the algorithm. To accelerate the convergence one can even preselect a value for
Q4 and end up with an one-variable optimization.

Under the M3 image and selecting the weight boundaries 100 ≤ Q2 = Q3 ≤ 1000 andQ4 = 100
the double optimization for the 9-7 filters returns Q2 = Q3 = 1000. After many hours the
routine simply converges to the largest upper limit, giving maximum emphasis to the mixed
frequency zones. The optimized filter along with optimized weights Q2 = Q3 = 1000 and
Q4 = 100 executed on M3 gives table 6.9.

Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
72.56% (9.17) 6.90% (5.78) 6.90% (5.78) 11.24% (5.11) 97.61% (6.46)

Table 6.9: Decomposition, energy divisions

The upper limit does minimize the total energy but it also propagates the entropy. The reduc-
tion in energy is very small compared with table 6.8 where the cross weights were at only 400.
It is quite clear that this double optimization is a somewhat restrictive method. The power of
the decomposed image can indeed be dropped along with low energy for the cross subimages
but the main disadvantage lies with energy growth in the HH subimage and entropy increases.

6.5.2 Entropy contraction

The concept from the previous section can be modified somewhat to design optimized 9-7
filters where the weights Q2 = Q3 and Q4 are chosen under constrains 100 ≤ Q2 = Q3 ≤
1000, and 100 ≤ Q4 ≤ 1000, with the outer optimization criteria being the minimization of the
entropy rather than the energy:

• find optimum values for Q2 = Q3 and Q4 to minimize the average entropy of w(x, y)

• generate filters to satisfy
min

∑∑
(wLL(x, y)2 +Q2wLH(x, y)2 +Q3wHL(x, y)2 +Q4wHH (x, y)2)

The entropy is a very image dependent measurement, nevertheless, low entropy should ensure
that the approximation done by the scaling and wavelet functions is of good quality. Using the
entropy as the cost function is generally not a good idea: As the optimization routine searches
for an appropriate answer it may well come cross a solution which imposes large energy and
entropy increases. This can make it impossible to compute the entropy values. However, in
this algorithm one is only in concern with the entropy at the outer level, where optimized
filters for particular weights have already been found, which makes it safe to use the entropy
calculations.

Using the entropy in the outer optimization is also a much quicker alternative than the energy.
The entropy figures are normally quite small < 10 which implies swift convergence.

Changing to the entropy contraction scheme and running the procedure over 9-7 filters and M3
image returns Q2 = Q3 = 405.76 as the optimized loads. The value for Q4 was set constant
at 100 to get fast convergence and to make certain that some energy is also shifted away from
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M3 : Q1 = 1, Q2 = 405.76, Q3 = 405.76, Q4 = 100.00:
Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
74.44% (9.19) 6.93% (5.54) 6.93% (5.54) 9.65% (5.05) 97.96% (6.33)

Table 6.10: Decomposition, energy divisions

the high-high subimage. The optimized filters for these weights give as expected good average
entropy results (table 6.10), slightly better than the CDF 9-7.

The mixed frequency zones are given very high consideration and the objectionable feature of
course is that the entire energy amount in the HH subimage remains quite high, but then this
is after all an energy shifting method with flexible emphasis on the LH/HL subimages.

The same algorithm under M1 and M2 returns respectively the weights Q2 = Q3 = 100.43 and
Q2 = Q3 = 100.00. For M1 and M2 the most favorable weights are more or less identical to
the preelected Q4(= 100). It follows that selecting equal weights for the LH,HL and HH zones
gives more or less optimum results for low frequency images in regard to shifting as much
energy as possible to the LL zone and also when it comes to reducing the average entropy of
the decomposed image.

If one is primary interested in reducing the information content of a decomposed image then
finding optimized weights for high frequency images is a useable option though this may not
shift maximum energy away from the subzones. Finding good starting values for the algorithm
can also become a slight problem.

6.6 White noise image

To test the optimized filters on as a general image as possible they can be designed over an
white noise image (M4). Figure 6.19 displays the experimental white noise image scaled up to
cover all the 8 available bits. The centered logarithmical scaled Fourier transform is displayed
on right.
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Figure 6.19: L: M4, R: Log Fourier transform of M4

The entropy of M4 comes at exactly 8.00 ¯b/p. Comparing the results given by optimized filters
with more standard filters we should be able to obtain absolute figures on how much effective
energy shifting filters can become.

Decomposing M4 with CDF 9-7 and Coiflet 17-11 we get table 6.11.

In accordance with our findings from chapter 3 both filters have attempted to shift some modest
amount of energy to the LL frequency zone. The total energy is somewhat increased but does
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Filter Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
CDF 9-7 26.83% (8.04) 25.68% (8.01) 25.40% (8.00) 24.35% (7.97) 102.27% (8.00)
Coiflet 17-11 28.76% (8.09) 25.58% (8.00) 25.34% (8.00) 22.55% (7.91) 102.25% (8.00)

Table 6.11: Decomposition, energy divisions

not have any negative impacts upon the entropy. This stability has no doubt played a major
role behind the success of these filters.

Running the optimization algorithm to construct effective filters to shift energy away from the
LH,HL and HH zones by setting Q2 = Q3 = Q4 = 1000 and thereafter running them on M4
gives table 6.12.

Filter Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
6-14 92.14% (8.91) 27.19% (8.05) 26.84% (8.04) 8.03% (7.18) 154.21% (8.04)
9-7 66.63% (8.68) 26.98% (8.04) 26.78% (8.04) 10.85% (7.39) 131.26% (8.04)
17-11 86.53% (8.86) 26.89% (8.04) 26.76% (8.03) 8.42% (7.21) 148.61% (8.04)

Table 6.12: Decomposition, energy divisions
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Figure 6.20: Decomposed images L: CDF 9-7, R: Optimized 9-7

The optimized 9-7 filter transfer about 14% more energy away from the HH subband than
the CDF filter, the energy transfer is also visible on right in figure 6.19. All this comes at the
expense of energy and entropy enlargement: A one percent energy reduction in the HH zone
corresponds to around 2.5% enlargement in the low-low subimage.
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Figure 6.21: L: Frequency response, S/W functions: M: Analysis R: Synthesis

The frequency response and the scaling/wavelet functions are shown in figure 6.21 for this
generalized 9-7 filter. The synthesis scaling function representing the irregularity of the image
compared with figures 6.12 and 6.13 is not that smooth.
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The other main extension we can perform on the algorithm is to find optimized weights to
decrease the entropy levels. Following the procedure outlined in section 6.5.2 we acquire Q2 =
Q3 = 985.67 and Q4 = 145.30 as the loads for the 9-7 filter variant. The filters then provide us
table 6.13.

M4: Q1 = 1, Q2 = 985.67, Q3 = 985.67, Q4 = 145.30:
Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
25.95% (8.01) 25.11% (7.99) 24.82% (7.98) 24.16% (7.96) 100.05% (7.98)

Table 6.13: Decomposition, energy divisions
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Figure 6.22: L: Frequency response, S/W functions: M: Analysis R: Synthesis

Although the average entropy can be decreased a little bit there is no energy shifting involved in
the these filters (figure 6.22), the large number ofQ2/Q3 diminish any effect the scaling/wavelet
filter could have had on respectively LL or HH subimages. Both of the function pairs end up
being continuous as no analysis/scaling filter plays any dominating role.

6.7 Generalized filters

The filters constructed so far have been optimized for one given image, their effectiveness can
thus vary greatly on other images. Filters optimized for several images can generaed by tak-
ing account of many pictures in the optimization. Assuming we have M images f0(x, y) ...
fM−1(x, y) the optimization objective function can be modified to suit them all:

min
∑∑(

Q1wLL,0(x, y)2 +Q2wLH,0(x, y)2 +Q3wHL,0(x, y)2 +Q4wHH,0(x, y)2

+ γ0

γ1
(Q1wLL,1(x, y)2 +Q2wLH,1(x, y)2 +Q3wHL,1(x, y)2 +Q4wHH,1(x, y)2)

+ ....

+ γ0

γM
(Q1wLL,M (x, y)2 +Q2wLH,M (x, y)2 +Q3wHL,M (x, y)2 +Q4wHH,M (x, y)2)

)

γi =
∑∑

wi(x, y)2 refers to the energy of image i. The normalization above is linked with
the first image (w ,0) but any image can be selected, to ensure equal treatment is given to each
image regardless the variations of energy. This strategy obviously means that all the images
have to be decomposed in the optimization iterations and the time requirement also goes up.
Anyway, the filters with best shifting properties for all the given images can be designed. For
such general optimization it is probably not a good idea to for example run the procedure over
M1,M2, M3 and M4 together as these images belong to different classes; mixing M1 and M2
on the other hand should give filters which can be used on many other images with similar
frequency content.

Figure 6.23 shows the 9-7 filters optimized for both M1 and M2 images (Q1 = 1 and Q2 = Q3 =
Q4 = 100).
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Figure 6.23: L: Frequency response, S/W functions: M: Analysis R: Synthesis

Image Energy LL Energy LH Energy HL Energy HH Sum ( ¯b/p)
M1 100.50% (8.29) 0.06% (4.31) 0.15% (4.72) 0.02% (3.51) 100.73% (5.21)
M2 101.42% (7.04) 0.19% (4.11) 0.27% (4.36) 0.03% (3.14) 101.93% (4.67)

Table 6.14: Decomposition, energy divisions

Comparing table 6.14 with the 9-7 filters in table 6.6 we remark that the results are not that
different. The filters give a good compromise for both images.

It is very clear from the frequency response of the scaling filter that it is highly biased and
covers a much wider frequency area than the wavelet filter. This also comes out very clear in
the overlap area plot (section 3.2.1) in figure 6.24.
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Figure 6.24: Overlap area of general optimized 9-7

The peak point occurs at 0.66π, above the CDF 9-7’s 0.54π. The figure of merit also returns a
much higher value of F = 2.96. The filters’ energies come at

∑
h[k]2 = 1.82 and

∑
g[k]2 = 0.68,

again showing a prominent difference.

6.8 Summary

The emphasis of this chapter has been on designing optimized separable filters for images
which would transfer as much energy as possible to the low-low subimage. We investigated
different models of type A filters and with stability limits one can obtain quite acceptable filters.
For weighted type B filters on the hand other the stability problem more or less vanishes and
the filters can manage to shift considerable energy away from the high-high frequency zone.
For many natural images this can give extra gains for lossless entropy coding. The weights for
high frequency images can also be set up in such a way to minimize the total energy or the
average entropy by implementing a double optimization.



Chapter 7

Iterative decomposition

The preceding chapter was concerned with only one scale decomposition of images. The test
images were decomposed into four quadrats where the optimization of filters and testing took
place. Such one scale iteration is not used for practical image compression intentions, rather the
iteration process is repeated with decompositions of the low-low subimages several times. In
this chapter we concentrate on weighted type B filters, as they gave the most qualified results,
and try to implement a 4 level dyadic iteration of the low frequency zone; this divides the image
into a total of 13 different subzones.

S1

S2

LL

Figure 7.1: Image decomposition L: f(x, y) R: w(x, y)

We denote the LH/HL/HH zones of the first iteration for S1, the subbands of the second itera-
tion for S2 and so on till S4. The LL zone (included in S4) corresponds to the small quadrat on
upper left. For the 256x256 test images the low-low subimage consists of 16x16 pixels.

7.1 Single scale optimized filters

The simplest possible method to design iterative suitable filters is to construct optimized weighted
type B filters over a single iteration and use them to further iterate the low frequency zones.
Taking basis in type B filters with equal weights for HL/LH/HH zones this implies that the
energy should be shifted away from the HH zones also in the iterated decomposed image.

Using the same filters as those used to establish table 6.6 and calculating the energy / average
entropy at each scale we obtain the next table (7.1).

The left-most column displays the energy and the average entropy of the upper-left 32x32 zone
and most power of the images has definitively been shifted over there. The average entropy
values are quite high for the S4 zone, however, the S4 zone only represents a small part of the
decomposed image; in that regard the table is not linear.

81
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Filter Energy S4 Energy S3 Energy S2 Energy S1 Sum ( ¯b/p)
M1
6-14 153919.89% (7.99) 613.14% (9.59) 17.63% (7.93) 0.36% (4.24) 154551.04% (5.24)
9-7 111.94% (7.70) 2.45% (7.71) 1.04% (6.18) 0.24% (4.17) 115.68% (4.77)
17-11 135.24% (7.81) 4.51% (8.05) 1.27% (6.36) 0.21% (4.10) 141.24% (4.76)
M2
6-14 1208.41% (7.89) 23.99% (8.20) 4.48% (6.36) 0.68% (4.08) 1237.58% (4.76)
9-7 119.27% (7.32) 5.40% (6.98) 2.74% (5.77) 0.51% (3.87) 127.93% (4.42)
17-11 160.70% (7.61) 11.07% (7.38) 3.94% (5.93) 0.48% (3.78) 176.19% (4.41)
M3
6-14 185.61% (7.43) 42.15% (8.71) 28.26% (8.37) 22.87% (7.40) 278.90% (7.65)
9-7 135.55% (7.42) 17.77% (8.10) 18.57% (7.53) 19.57% (6.64) 191.46% (6.89)
17-11 590.74% (7.30) 44.85% (7.60) 27.15% (6.56) 17.91% (5.55) 680.67% (5.86)

Table 7.1: Decomposition, energy divisions

The entropy figure on the right-most table can in a practical situation be obtained if each of
the 13 zones are coded independently. These values are much lower than if no iteration is
performed in the decomposition process (table 6.6). This is the whole advantage of iteration as
the entropy is further depressed.

The 6-14 filter gives large energy increases in the S2/S3 zones than the other filters due to the
wavelet filter having much more freedom than the 6-tap scaling filter, forcing a larger gain on
the scaling filter. Inspection of the optimized filters with the standard filters (table 7.2) reveals
that these optimized filters are, from an entropy point of view, not doing well after all. The
specialized constructed filters only give improved performance for the S1 zones and that only
under M1 and M2 images. As the filters are only optimized for one iteration this is not so
unexpectable.

Filter Energy S4 Energy S3 Energy S2 Energy S1 Sum ( ¯b/p)
M1
CDF 9-7 97.44% (7.43) 0.62% (6.81) 0.40% (5.55) 0.27% (4.35) 98.75% (4.74)
Coiflet 17-11 98.43% (7.45) 0.72% (6.91) 0.43% (5.59) 0.26% (4.33) 99.85% (4.73)
M2
CDF 9-7 93.25% (6.76) 1.86% (6.05) 1.10% (5.06) 0.61% (4.05) 96.83% (4.37)
Coiflet 17-11 95.91% (6.88) 2.10% (6.15) 1.19% (5.11) 0.58% (4.02) 99.80% (4.37)
M3
CDF 9-7 51.64% (7.06) 5.76% (6.28) 9.68% (5.74) 21.85% (5.40) 88.94% (5.53)
Coiflet 17-11 61.29% (6.86) 6.64% (5.47) 10.33% (5.15) 21.18% (4.90) 99.45% (5.01)

Table 7.2: Decomposition, energy divisions

The main feature of the selected optimized filters is the ability to shift energy away from the
HH subimage at the expense of power increase in the LL subimage. While iterating, the energy
in the newer LL subbands is enlarged all the times in each iteration. This also affects the cross
zones LH and HL of the iterated areas with power increases, consequently the results for S2
and S3 demonstrate enlargements.

Figure 7.2 shows the distortion levels for M1, M2 and M3 at lossy coding for the optimized 9-7
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filters; the dashed lines are from the CDF 9-7 filter. Such plots can be generated if we trun-
cate different subzones of the decomposed image and reconstruct the image. This is the most
effective method to test whether energy shifting really gives any advantages when the high
frequency subzones are successively removed.
12 subbands (extreme right) in the plots indicate that only the HH zone in the image is trun-
cated, with 10 zones the whole S1 is set to zero. This truncation of HH and HL/LH is repeated
till only 1 zone (LL, extreme left) remains, which of course yields the lowest quality.
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Figure 7.2: Subband truncation, L:M1 M:M2 R:M3

The plots show that the optimized filters perform worse than the popular CDF 9-7 filter. The
higher entropy levels and energy shifting do not offer improve reconstruction quality if we
look at the PSNR. It is easy to manifest that filters optimized for shifting energy over a single
iteration are not very suitable for iterative work. Even at 12-10 subbands, where only the S1
zone is truncated, the quality of the reconstructed image is generally not better than under CDF
9-7. As we remarked in section 6.4.1 preservation of any high frequency structure has anyway
little effect on the PSNR.

7.2 Iterative optimized filters

There are several methods one can use to make the filters take account of the iteration process.
One extension of the weighted type B algorithm from section 6.4 is to find filters who minimize
the energy of the iterated decomposed image.

The new optimization for a 4 level iteration can look like this:

min
∑∑

(Q1S4LH/HL/HH (x, y)2 +Q2S3(x, y)2 +Q3S2(x, y)2 +Q4S1(x, y)2)

All of the energy, but in the LL zone, is given higher weight with the aid of Q1, Q2, Q3 and Q4

in the optimization and this can help transfer the energy away from all the detail subbands.

7.2.1 Equal weights

Selecting equal weights Q1 = Q2 = Q3 = Q4 is a straightforward option and table 7.3 shows
the outcomes in this circumstance; 9-7 filter with all the loads at 1000.

Equal loads for S1, S2, S3 and S4 (LL excluded) can easily be seen as not being a reasonable
choice for the optimization as with iterations the quantity of energy in the subbands increases,
this must be allowed and tolerated by selecting decreasing loads for the iterative subzones. The
optimization results in table 7.3 do not follow this strategy and one can observe that there is
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Image Energy S4 Energy S3 Energy S2 Energy S1 Sum ( ¯b/p)
M1 93.58% (7.07) 0.17% (6.26) 0.23% (5.44) 0.49% (4.96) 94.48% (5.14)
M2 79.68% (6.67) 0.49% (5.49) 0.60% (4.86) 1.16% (4.62) 81.95% (4.74)
M3 32.19% (6.91) 3.30% (6.48) 7.05% (6.04) 25.96% (5.89) 68.51% (5.96)

Table 7.3: Decomposition, energy divisions
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Figure 7.3: M1 L: Frequency response, S/W functions: M: Analysis R: Synthesis
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Figure 7.4: Subband truncation, L:M1 M:M2 R:M3

much energy still left in the S1 zone. There is likewise virtually no energy shifting to the S4/LL
zones in the table.

The performance for these equal weight filters (solid line in figures 7.4) is also not any better.
Only for the special M3 image the outcomes are comparable to the CDF filter.

7.2.2 Weights relative to the area

A different weight selection for Q1, Q2, Q3 and Q4 can be related with the number of pixels
they cover. The outer zone S1 covers three quarter 3

4 of the image while S2 only one fourth of
this, 3

4·4 . The S3 part 3
4·4·4 while S4 (ignoring LL) conceals 3

4·4·4·4 part of the image. The weights
can therefore be multiplied relative to the field. Starting with Q4 = 1000 one obtains Q3 = 250,
Q2 = 62.5 and Q1 = 15.6.

9-7 Filters

Selecting this optimization method we constructed optimized 9-7 filters for all three test images,
the outcomes from the decompositions are in table 7.4.

The average entropy values are not any better than under CDF 9-7, however, together the total
energy in S1,S2 and S3 compared with the CDF filter is lower for the optimized filters and
likewise is the situation for the entropy in these zones. The artificial M3 image though is an
exception. Still, one does not observe any large energy increases for the S4 zone and the effect



CHAPTER 7. ITERATIVE DECOMPOSITION 85

Image Energy S4 Energy S3 Energy S2 Energy S1 Sum ( ¯b/p)
M1 96.09% (7.33) 0.44% (6.66) 0.34% (5.50) 0.28% (4.44) 97.17% (4.79)
M2 88.49% (6.73) 1.23% (5.84) 0.89% (4.97) 0.64% (4.16) 91.27% (4.43)
M3 77.22% (7.34) 9.00% (7.50) 11.98% (6.89) 20.35% (6.34) 188.56% (6.51)

Table 7.4: Decomposition, energy divisions

of energy shifting seems to be minimal, on the contrary one notices a power increase for the S1
area.
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Figure 7.5: Subband truncation, L:M1 M:M2 R:M3

If we start to truncate different subzones and reconstruct the image then it’s apparent (figure
7.5) that these optimized filters are capable of doing a little better job than the standard 9-7
filter. As the iterated subzones S2,S3 and S4 accommodate lower entropy, quantization of these
areas result in lower ¯b/p rates than what is the case under CDF 9-7. The PSNR values of the
reconstructed image, however, remain competitive.

Figure 7.6 displays the PSNR against the average bit per pixel values and generally the optim-
ized filters give a slightly better outcome, that is when we exclude M3.
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Figure 7.6: Bit rate coding, L:M1 M:M2 R:M3

The frequency response for M1 and M2 shows zero points for the optimized filters placed dir-
ectly upon the unit circle which distinguishes the filters from for example the CDF 9-7 where
the extra degrees are used to increase the number of vanishing moments.

The placement of zero points in the optimized filters is somewhat similar to the 9-7 filters de-
signed in [12] where one also obtained better coding results with zero placement on the unit
circle. The filter construction procedure in [12] is, however, vastly different from the one we
have implemented.

The scaling and wavelet functions are now all rather smooth and the discontinuity of functions
we observed in chapter 6 is gone. Constrains on filters are thus unnecessary. It follows that
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Figure 7.7: M1 L: Frequency response, S/W functions: M: Analysis R: Synthesis
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Figure 7.8: M2 L: Frequency response, S/W functions: M: Analysis R: Synthesis
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Figure 7.9: M3 L: Frequency response, S/W functions: M: Analysis R: Synthesis

smoothness for the analysis scaling function (and the synthesis wavelet filter) starts playing an
increasingly important role when iterations are performed. For a single level decomposition
one can manage even if one of the pairs of functions do not converge uniformly.

Figure 7.10 and 7.11 visually demonstrate the case of M1 and M2. The gains are not large, but
they affirmatively are there.

Figure 7.10: M1 CDF 9-7: LL: ¯b/p = 0.73 PSNR=28.52, L: ¯b/p = 1.38 PSNR=30.52, Optimized
9-7: R: ¯b/p = 0.72 PSNR=28.59, RR: ¯b/p = 1.37 PSNR=30.60

Is this higher gain really worth the optimization effort which must be performed on every
image ? The answer to this question depends pretty much upon the type of images one is com-
pressing. If the lossy compression process is limited to a certain class of images, for example
MR scans, then designing a general optimized filter over a few images can be worthwhile.
On the other hand, for general purpose image compressions this optimization process is most
likely to be too time consuming. For lossless compression or very small quantization steps the
CDF 9-7 filters still wins out by small margins.
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Figure 7.11: M2 CDF 9-7: LL: ¯b/p = 0.64 PSNR=30.70, L: ¯b/p = 1.25 PSNR=33.29, Optimized
9-7: R: ¯b/p = 0.63 PSNR=30.84, RR: ¯b/p = 1.23 PSNR=33.44

17-11 Filters

Increasing the filter lengths from 9-7 to 17-11 provides more free variables which can yield more
advantageous to the optimization at the expense of extra computation time.

In table 7.5 one finds the decomposition results in case of 17-11 filters optimized using the
same criteria of setting the weights for the iterated zones relative to the number of pixels they
comprehend.

Image Energy S4 Energy S3 Energy S2 Energy S1 Sum ( ¯b/p)
M1 95.55% (7.24) 0.39% (6.55) 0.33% (5.46) 0.28% (4.45) 96.56% (4.78)
M2 85.03% (6.65) 0.83% (5.64) 0.84% (4.94) 0.64% (4.19) 87.36% (4.44)
M3 117.92% (7.00) 11.26% (6.00) 12.79% (5.22) 19.43% (5.03) 161.42% (5.14)

Table 7.5: Decomposition, energy divisions

Compared with Coiflet 17-11 the filters depress the total energy in S1,S2 and S3, one would
expect this to enlarge the power in the S4 zone but that does not happen. Plots in figure 7.12
display the PSNR values against bit rates if the images are coded with only a limited number of
subbands. The dashed lines tell the outcomes from the Coiflet 17-11 filter. The optimized filters,
as in the 9-7 case, offer better coding rate for the same PSNR value. The optimized filters still do
not work satisfactory for M3, for high frequency images the weights for the mixed frequency
zones LH and HL should probably be selected differently.
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Figure 7.12: Bit rate coding, L:M1 M:M2 R:M3

The frequency response of the optimized 17-11 filter contains zero points on the unit circle
which does not occur for the Coiflet 17-11 filter (figur 2.19). The optimized scaling and wavelet
functions, however, exhibit a striking resemblance to the functions generated by the Coiflet
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Figure 7.13: M1 L: Frequency response, S/W functions: M: Analysis R: Synthesis
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Figure 7.14: M2 L: Frequency response, S/W functions: M: Analysis R: Synthesis

variant. It is perhaps unnecessary to point to that we have no where used Bernstein basis
and frequency domain design processing [17] to attain the optimized filters. The optimized
functions have small irregularities in them which seems to be linked to image itself, as these
minor features change for M1 and M2. The M2 image contains more high detail structure than
M1, which is hence reflected by the functions.

Figure 7.15: M1 Coiflet 17-11: LL: ¯b/p = 0.35 PSNR=26.61, L: ¯b/p = 1.40 PSNR=30.65, Optim-
ized 17-11: R: ¯b/p = 0.33 PSNR=26.70, RR: ¯b/p = 1.35 PSNR=30.74

Figure 7.16: M2 Coiflet 17-11: LL: ¯b/p = 0.31 PSNR=28.92, L: ¯b/p = 1.27 PSNR=33.47, Optim-
ized 17-11: R: ¯b/p = 0.28 PSNR=28.92, RR: ¯b/p = 1.21 PSNR=33.61

The main burden with longer lengths filters is related with the starting figures of the many free
variables, and one needs to try many different values in order to locate a global minimum.
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An alternative method to the optimization technique gone through in this section is to discard
the LL zone altogether and select Q4 = 1 for the S1 zone while the other loads can be set as
Q3 = 1

4 , Q2 = 1
4·4 and Q1 = 1

4·4·4 .

7.2.3 Optimized weights

The filters in the last section offer good performance, but the weights Q1, Q2, Q3 and Q4 are set
constant and do not change. Optimized weights to shift maximum energy over to the LL zone
can only be found via double-optimization procedures where the outer routine searches for the
weights while the inner routine finds optimized filters given the weights. The criteria for the
outer loop can as previously be set either as energy or entropy minimization.

Optimization over all 4 variables to find Q1,Q2,Q3 and Q4 is a demanding operation and may
well give convergence problems if no good starting points are available. We can therefore
simplify the problem by placing a linear relationship between the weights as: Q4 = 1000,
Q3 = Q4(1 − α), Q2 = Q3(1 − α) and Q1 = Q2(1 − α), 0 < α < 1. At the extreme points
α = 0 gives equal weights to all the subzones (except LL) while α = 1 makes the algorithm
only concentrate upon the energy minimization in S1. With α = 0.5 the optimization routine
for example accepts twice the amount of energy in the S2 zone than in S1 and so on.
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Figure 7.17: Varying α, L: M2 R: M3

The left plot in figure 7.17 shows the effect of varying α on M2 and how this effects the energy
in the S1 zone (top row), S2,S3 and S4LH/HL/HH zones (middle row) and the LL subimage
(bottom row). The plot on right follows the same pattern for M3.

It is easy to observe that a large value for α shrinks the energy in S1 and results in an en-
largement for the LL subimage. The total energy of the other zones is shown cumulative in
the middle and as α propagates this sum grows as well. The S1 subzone is made up of three
quarter of the image and maximum energy reduction there can only be obtained if we set α
very close to 1. This, however, brings us back to the previous position in section 7.1 where the
only focus is on the first iteration. If we set α to smaller values then we can reduce the energy
in other zones but that does not yield any reduction in S1.

Sticking to the aim of shifting as much energy as possible to the LL zone one must find an α
which minimizes the cumulative energy of the S1,S2 and S3 zones. Finding such an α requires
anything but a double optimization procedure:

• find optimum α to minimize the total energy, S1+ S2+ S3

• generate optimized filters to satisfy
min

∑∑
Q S1(x, y)2 +Q(1− α) S2(x, y)2 +Q(1− α)2 S3(x, y)2

+Q(1− α)3 S4LH/HL/HH(x, y)2



CHAPTER 7. ITERATIVE DECOMPOSITION 90

With Q = 1000 this optimization strategy returns α = 0.3214 for M1, α = 0.3154 for M2 and
α = 0.2564 for M3 and 9-7 filter pair. The value for M3 is very different from the others as this
picture is clearly distinctive from the rest.

Using these respective values for α and decomposing with the optimized filters we acquire
table 7.6.

Image Energy S4 Energy S3 Energy S2 Energy S1 Sum ( ¯b/p)
M1 α = 0.3214 94.10% (7.10) 0.22% (6.37) 0.24% (5.41) 0.40% (4.78) 94.98% (5.01)
M2 α = 0.3154 81.71% (6.60) 0.61% (5.52) 0.63% (4.83) 0.96% (4.47) 83.92% (4.62)
M3 α = 0.2564 39.27% (6.90) 4.12% (6.06) 7.93% (5.75) 23.88% (5.50) 75.22% (5.60)

Table 7.6: Decomposition, energy divisions

We notice that the cumulative sum of the energy in S1, S2 and S3 zones is lower than in tables
7.2,7.4 or 7.5, though, there is no power shrinking in the large S1 zone for the optimized filters
and virtually no energy increase in the S4 subimage. These filters can not be said to be good
at shifting power, but they dampen the energy with each iteration; this is quite similar to the
filters in section 7.2.1. The energy and entropy content in the S4 zone is rather low, still, the
performance from these filters (figure 7.18) is not better than the standard 9-7 nor does is it any
enhanced than the method utilized in section 7.2.2.
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Figure 7.18: Subband truncation, L:M1 M:M2 R:M3

This suggest that maximum energy reduction for the S1,S2 and S3 zones; at the expense of
power enlargement in S1 is not an appropriate method for wavelet filter design.

7.3 Summary

In this chapter we looked at methods to design optimized filters for iterative decomposition
of images. Iterative usage of wavelets demand other features from the filters than purely the
ability to shift energies, as it was shown this property alone does not perform well. By changing
the optimization criteria and selecting weights relative to the total area covered by a subband,
optimized filters can be designed with reasonable coding properties. Such algorithms can be
used to design filters which can yield slightly higher PSNR values at the same or lower ¯b/p
coding rates compared with some traditional filters.



Chapter 8

Conclusions and future work

The purpose behind this study was to investigate new approaches to the wavelet filter design
process, and to relate the extra degrees of freedom available in biorthogonal wavelet filter banks
directly with the signal or image itself.

We started with examination of some current biorthogonal wavelet filters and found that these
filters try to transfer energy from the higher frequencies to the low frequency zone. For the
majority of filters this energy shift was limited and the filters only showed a small bias towards
the high frequency spectrum.

Beginning with chapter 4 the attention was on construction of optimized wavelet filters for a
given signal, which would move as much energy as possible to the low frequency subband.
This turned out not to be a very difficult task, however, it was found that it is important to
implement stability constrains in order to control the convergence of scaling functions. Stability
has a negative efect on optimization, but even with stability setup the filters can manage to shift
a noticeable amount of energy away from the high frequency side. For certain signals this can
give lower average entropy results.

Expanding the same concepts to images we obtained similar outcomes, and for one level de-
composition of natural images it is possible to transfer considerable quantity of energy away
from the high-high subband and obtain lower average entropy results than many of the stand-
ard filters. Such filters alone do not perform satisfactory for iterative decomposition, as energy
enlargements in the LL zones starts playing a negative role. By taking account of the iterative
subbands and the number of pixels they cover, the energy shifting idea can still be employed
for iterative decomposition and one can easily construct optimized filters which are able to
compete with many standard accessible filters.

One of the main conclusion one can come up with is that this study provides some untra-
ditional ways to design wavelet filter systems, based purely upon numerical optimization.
The generated filters are also able to return acceptable performance and in some cases out-
perform the current variants. Although, there is no replacement for the theoretical framework
the design process of wavelet filters for use in signal/image processing can be related with dif-
ferent energy shifting strategies with little emphasis given to for example maximum regularity
constrains.

As it was demonstrated in section 7.2.2 a relative simple optimization procedure can return
good filters for practical usage. Somewhat surprisingly, the resulting filters bear close resemb-
lance to the wavelets filters others have proposed by various different methods. By designing
optimized filters over a number of images one should therefore be in a position to attain filters

91
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with competent general performance. This subject, however, is very vast and and a whole new
study can be devoted to this topic alone, where one further investigates different properties
and the advantages / disadvantages of such optimized filters.

It may also be possible to slightly modify the weights in such a way which can provide optimal
coding. The weights can thus be set relative to the area and to some other selected criteria.
One possibility is not to minimize energy but to directly aim for entropy reductions of the de-
composed image. This would require a closer look at the optimization process and the energy
minimization can be used to find good starting points for entropy reduction. A more detailed
look at the quantization and coding process for the filter designed in the study can be of much
interest.

The optimization of one dimensional signals was not given any practical thoughts and this too
is an area where more work can be done. The effects of energy shifts in for example compres-
sion of audio signals can be interesting to track.



Appendix A

Filter coefficients

This appendix provides filter coefficients for some of the more interesting filters generated in
this study. References are made to tables in the text, and only the scaling filters are provided.
The wavelet filters follow by relationships given in chapter 2.

10-6 from table 5.3:
h = [0.0081149241839353 0.00446696552391771 0.0462180167230959 − 0.0845502470871813
0.73285712184278 0.73285712184278 −0.0845502470871813 0.0462180167230959 0.00446696552391771
0.0081149241839353]
h̃ = [0.0769297508395753 − 0.0423469815582817 0.672524011905254 0.672524011905254
− 0.0423469815582817 0.0769297508395753]

26-6R from table 5.3:
h = [0.000125231293128392 6.89353006265115e − 05 0.00308361322971405 1.35796101230516e − 10
0.0139147934709254 − 0.0193848333909051 − 0.0369598090837434 0.0243907880725944
−0.0467582149942421 0.0595550195269377 0.0210502002777024 −0.0498970160502079 0.737918073465225
0.737918073465225 −0.0498970160502079 0.0210502002777024 0.0595550195269377 −0.0467582149942421
0.0243907880725944 − 0.0369598090837434 − 0.0193848333909051 0.0139147934709254
1.35796101230516e − 10 0.00308361322971405 6.89353006265115e − 05 0.000125231293128392]
h̃ = [0.0769297508395753 − 0.0423469815582817 0.672524011905254 0.672524011905254
− 0.0423469815582817 0.0769297508395753]

9-7 from table 5.5:
h = [−0.130931417586072 − 0.0176481089799225 − 0.116864596701424 0.371201499573196
1.20269880976154 0.371201499573196 −0.116864596701424 −0.0176481089799225 −0.130931417586072]
h̃ = [0.267588909631267 − 0.0360680295536157 0.0859644809620065 0.779242840293779
0.0859644809620065 − 0.0360680295536157 0.267588909631267]

17-11 from table 5.5:
h = [0.0211997942192092 − 0.00553754081796288 − 0.0868175502898043 0.00719973460776095
0.134923434358389 −0.178521741418566 −0.125130648343527 0.530412938222042 0.818756721298013
0.530412938222042 −0.125130648343527 −0.178521741418566 0.134923434358389 0.00719973460776095
− 0.0868175502898043 − 0.00553754081796288 0.0211997942192092]
h̃ = [0.0636917449451208 0.0166367481567973 −0.116787522070408 0.0159946075632493 0.406649167718561
0.641844069746454 0.406649167718561 0.0159946075632493 −0.116787522070408 0.0166367481567973
0.0636917449451208]

10-6R from table 5.6:
h = [−0.00259813512265031 0.0788109197918546 − 0.209625449219418 − 0.195666863751791
1.03618630948855 1.03618630948855 −0.195666863751791 −0.209625449219418 0.0788109197918546
− 0.00259813512265031]
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h̃ = [0.00602641332303701 0.182803108619674 0.518277259243837 0.518277259243837 0.182803108619674
0.00602641332303701]

10-6R from table 5.7:
h = [0.00499310536498627 0.0383956201924282 − 0.165614277490092 − 0.0556426118483388
0.884974944967564 0.884974944967564 −0.0556426118483388 −0.165614277490092 0.0383956201924282
0.00499310536498627]
h̃ = [−0.0203431802697728 0.156433515026864 0.571016446429456 0.571016446429456 0.156433515026864
− 0.0203431802697728]

9-7, M1 from table 6.5:
h = [0.238657181089884 − 0.0841514752230178 − 0.019653556112844 0.437704865816292
0.269099531232468 0.437704865816292 −0.019653556112844 −0.0841514752230178 0.238657181089884]
h̃ = [−0.401023255740114 − 0.141402401617065 0.754576646333388 0.989911584420678
0.754576646333388 − 0.141402401617065 − 0.401023255740114]

9-7, M2 from table 6.5:
h = [0.262560103355673 − 0.100325191619466 − 0.00688022363096841 0.45387858221274
0.195747021737139 0.45387858221274 −0.00688022363096841 −0.100325191619466 0.262560103355673]
h̃ = [−0.427977377417235 − 0.163531747014957 0.781530768010508 1.03417027521646
0.781530768010508 − 0.163531747014957 − 0.427977377417235]

9-7, M2 from table 6.5:
h = [0.07479242225809 − 0.0407958429382374 − 0.0790014839556439 0.394349233531511
0.715524904581655 0.394349233531511 −0.0790014839556439 −0.0407958429382374 0.07479242225809]
h̃ = [−0.123888778291883 − 0.0675756579131128 0.477442168885156 0.842258097012773
0.477442168885156 − 0.0675756579131128 − 0.123888778291883]

9-7, M1 from table 6.6:
h = [0.0261056339807951 − 0.0452366592097134 − 0.270565469529881 0.398790049802987
1.19602645228472 0.398790049802987 −0.270565469529881 −0.0452366592097134 0.0261056339807951]
h̃ = [0.0213884718297301 0.037062613070031 0.332164918763544 0.632981555046486
0.332164918763544 0.037062613070031 0.0213884718297301]

9-7, M2 from table 6.6:
h = [0.0133877323692417 0.0275274083367311 − 0.286526327836927 0.326025982256543
1.25338397212192 0.326025982256543 −0.286526327836927 0.0275274083367311 0.0133877323692417]
h̃ = [−0.0203659488344288 0.041875784058719 0.373919339427703 0.62335521306911
0.373919339427703 0.041875784058719 − 0.0203659488344288]

9-7, M3 from table 6.6:
h = [−0.0241301567960936 − 0.000675942236116889 − 0.174092887734909 0.354229332829391
1.10355287024855 0.354229332829391 − 0.174092887734909 − 0.000675942236116889
− 0.0241301567960936]
h̃ = [0.0482704360605875 − 0.00135216802629404 0.305282954532686 0.709811117239136
0.305282954532686 − 0.00135216802629404 0.0482704360605875]

9-7, M4 from table 6.12:
h = [−0.045781118855036 − 0.000339301092777133 − 0.175424642942453 0.353892691686051
1.14951830478152 0.353892691686051 − 0.175424642942453 − 0.000339301092777133
− 0.045781118855036]
h̃ = [0.0915648232999242 − 0.000678621348333776 0.26198856729335 0.708464023883215
0.26198856729335 − 0.000678621348333776 0.0915648232999242]

9-7, M4 from table 6.13:
h = [0.000859175631050722 − 0.0118649074894742 − 0.0777909575050763 0.365418298082748
0.860970344934599 0.365418298082748 −0.0777909575050763 −0.0118649074894742 0.000859175631050722]
h̃ = [−0.00497750851024253 − 0.0687376083163294 0.358530899103516 0.844581997819206
0.358530899103516 − 0.0687376083163294 − 0.00497750851024253]

9-7 from table 6.14:
h = [0.011337006969397 0.0213998899846802 −0.262863566612625 0.332153500608594 1.210159900473
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0.332153500608594 − 0.262863566612625 0.0213998899846802 0.011337006969397]
h̃ = [−0.0183379738992656 0.0346150112675717 0.371891364492539 0.637876758651404
0.371891364492539 0.0346150112675717 − 0.0183379738992656]

9-7, M1 from table 7.4:
h = [0.0637759701342507 − 0.0235541748351232 − 0.107271542870431 0.377107565428397
0.794097926658909 0.377107565428397 −0.107271542870431 −0.0235541748351232 0.0637759701342507]
h̃ = [−0.117122164631056 − 0.043256354030849 0.47067555522433 0.793619489248246
0.47067555522433 − 0.043256354030849 − 0.117122164631056]

9-7, M2 from table 7.4:
h = [0.0730292822756296 − 0.0282417930404378 − 0.0976056823824546 0.381795183633712
0.756259581400197 0.381795183633712 −0.0976056823824546 −0.0282417930404378 0.0730292822756296]
h̃ = [−0.131898471665481 − 0.0510076126048637 0.485451862258754 0.809122006396275
0.485451862258754 − 0.0510076126048637 − 0.131898471665481]

9-7, M3 from table 7.4:
h = [0.0010217775871718 − 0.00987782662572342 − 0.121958126996232 0.363431217218997
0.948979480004667 0.363431217218997 −0.121958126996232 −0.00987782662572342 0.0010217775871718]
h̃ = [−0.0033555353867028 − 0.0324389546242395 0.356908925979977 0.771984690435026
0.356908925979977 − 0.0324389546242395 − 0.0033555353867028]

17-11, M1 from table 7.5:
h = [0.00323239109327755 0.00882230121114521 − 0.0409170204115113 0.0301927523836962
0.110712233819226 −0.0714068111642326 −0.0985340281841358 0.385945148162665 0.758119628552834
0.385945148162665 −0.0985340281841358 −0.0714068111642326 0.110712233819226 0.0301927523836962
− 0.0409170204115113 0.00882230121114521 0.00323239109327755]
h̃ = [0.00925570944187871 −0.0252619977789099 −0.141193887964795 −0.0208656722917339 0.48549156911619
0.799362121327835 0.48549156911619 −0.0208656722917339 −0.141193887964795 −0.0252619977789099
0.00925570944187871]

17-11, M2 from table 7.5:
h = [0.00369138916002243 0.0194110401306916 − 0.0594515142386153 0.0464937805788446
0.123015123831897 −0.0705189357723379 −0.0842241676884034 0.358167505656076 0.741045119056745
0.358167505656076 −0.0842241676884034 −0.0705189357723379 0.123015123831897 0.0464937805788446
− 0.0594515142386153 0.0194110401306916 0.00369138916002243]
h̃ = [0.00899686455733635 − 0.0473096959985112 − 0.162975616429307 − 0.0182600853366955
0.507532142465245 0.838246343856961 0.507532142465245 −0.0182600853366955 −0.162975616429307
− 0.0473096959985112 0.00899686455733635]

9-7, M1 from table 7.6:
h = [0.133955211970994 − 0.0575809071840287 − 0.0519266802464524 0.411134297777302
0.543049717737464 0.411134297777302 −0.0519266802464524 −0.0575809071840287 0.133955211970994]
h̃ = [−0.224502999757239 − 0.0965030490516252 0.578056390350513 0.900112879289798
0.578056390350513 − 0.0965030490516252 − 0.224502999757239]

9-7, M2 from table 7.6:
h = [0.153871529466597 − 0.0739640388239883 − 0.0352283673932729 0.427517429417262
0.469820457039899 0.427517429417262 −0.0352283673932729 −0.0739640388239883 0.153871529466597]
h̃ = [−0.245539391385284 − 0.118027585351208 0.599092781978558 0.943161951888963
0.599092781978558 − 0.118027585351208 − 0.245539391385284]

9-7, M3 from table 7.6:
h = [0.0609662870539563 − 0.0342647337280331 − 0.0900037953332786 0.387818124321307
0.765181797745192 0.387818124321307 −0.0900037953332786 −0.0342647337280331 0.0609662870539563]
h̃ = [−0.102305136964679 − 0.0574983067937579 0.455858527557953 0.822103394774063
0.455858527557953 − 0.0574983067937579 − 0.102305136964679]
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