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It is common practice to use Laplace approximations to decrease the computational burden 
when computing the marginal likelihoods in Bayesian versions of generalised linear models 
(GLM). Marginal likelihoods combined with model priors are then used in different search 
algorithms to compute the posterior marginal probabilities of models and individual 
covariates. This allows performing Bayesian model selection and model averaging. For 
large sample sizes, even the Laplace approximation becomes computationally challenging 
because the optimisation routine involved needs to evaluate the likelihood on the full 
dataset in multiple iterations. As a consequence, the algorithm is not scalable for large 
datasets. To address this problem, we suggest using stochastic optimisation approaches, 
which only use a subsample of the data for each iteration. We combine stochastic 
optimisation with Markov chain Monte Carlo (MCMC) based methods for Bayesian model 
selection and provide some theoretical results on the convergence of the estimates for 
the resulting time-inhomogeneous MCMC. Finally, we report results from experiments 
illustrating the performance of the proposed algorithm.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Marginal Likelihood plays an extremely important role in Bayesian statistics. For a dataset y and a model m which 
may depend on some unknown parameter vector θm , the marginal likelihood is given by

p(y|m) =
∫

θm

p(y|m, θm)p(θm|m)dθm (1)

where p(θm|m) is the prior for θm under model m while p(y|m, θm) is the likelihood function conditional on θm . Consider 
the comparison of two models mi and m j based on the ratio of their posterior marginal model probabilities:

p(mi |y)

p(m j|y)
= p(y|mi)

p(y|m j)
× p(mi)

p(m j)
. (2)

* Corresponding author at: University of Oslo, 0851 Moltke Moes vei 35 Oslo, Norway.
E-mail addresses: jon.lachmann@stat.su.se (J. Lachmann), aliaksah@math.uio.no (A. Hubin).
https://doi.org/10.1016/j.ijar.2022.08.018
0888-613X/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ijar.2022.08.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2022.08.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jon.lachmann@stat.su.se
mailto:aliaksah@math.uio.no
https://doi.org/10.1016/j.ijar.2022.08.018
http://creativecommons.org/licenses/by/4.0/


J. Lachmann, G. Storvik, F. Frommlet et al. International Journal of Approximate Reasoning 151 (2022) 33–63
The ratio between the marginal likelihoods on the right-hand side is called the Bayes Factor [27]. It is commonly used to 
quantify to which extent one model is preferable compared to the other. To obtain the ratio (2) the marginal likelihoods 
need to be calculated up to a constant.

In the setting of Bayesian model averaging, if we are interested in some quantity �, we want to calculate the posterior 
marginal distribution

p(�|y) =
∑
m∈M

p(�|m, y)p(m|y). (3)

To this end we need the posterior marginal model probability p(m|y) for model m which according to Bayes theorem can 
be calculated as:

p(m|y) = p(y|m)p(m)∑
m′∈M p(y|m′)p(m′)

. (4)

Again, we need to obtain the marginal likelihood p(y|m). Further, in the denominator, we would need to compute the 
marginal likelihood for every model m′ ∈ M. This is usually not computationally feasible except for very limited model 
spaces. A common solution to this is to use a Metropolis-Hastings algorithm to search through the model space within a 
Monte Carlo setting [20]. The required acceptance ratio when considering a move to m� based on a proposal distribution 
q(m�|m) is then of the form

rm(m,m�) = min

{
1,

p(y|m�)p(m�)q(m|m�)

p(y|m)p(m)q(m�|m)

}
, (5)

which again involves the marginal likelihoods.
All these problems show the fundamental importance of being able to calculate the marginal likelihood p(y|m) in 

Bayesian statistics. At the same time, it can often be very time-consuming to evaluate p(y|m), especially when the sample 
size is large. For this reason, a lot of research has been conducted to find ways to reduce this computational burden. When 
using conjugate priors there exist closed-form expressions for the exact marginal likelihood. Otherwise, it can often be esti-
mated using either simulations or approximation methods [2]. These methods range from MCMC simulation to variations of 
Laplace approximation [43] and Variational Bayes (VB) [18]. Recently, quite efficient [23] integrated nested Laplace approxi-
mations were introduced [37]. Examples of MCMC-based approaches include the harmonic mean estimator [34] and Chib’s 
method [11]. The former estimates the marginal likelihood as the harmonic mean of a sample obtained using MCMC [18]. 
The latter is based on the Gibbs sampler [19].

Methods using Laplace approximation of the marginal likelihood are particularly relevant when computational time is 
of importance [18] as they outperform competing methods in run-time by a large factor. Some assumptions have to be 
made about the posterior, but as we shall see later, the performance remains acceptable in most cases, especially when 
the sample size is large. Yet, even these approximations can become computationally demanding for increasingly large 
datasets. The objective of this paper is to propose a novel subsampling strategy for calculating the marginal likelihood. 
This will result in a more scalable version of Bayesian model selection. More specifically, the proposed methodology will 
enable using Bayesian model selection and model averaging for generalised linear models (GLM) where a large number of 
observations is available (so-called “tall data”).

We propose a novel general approach based on subsampling optimisation algorithms such as batch stochastic gradient 
descent (BSGD) or stochastic quasi-Newton (SQN) [9] when calculating the Laplace approximation of the marginal likelihood 
which is used in MCMC for Bayesian model selection. These algorithms compute the maximum likelihood estimates (MLE) 
or the posterior modes without using the full dataset at every iteration of the optimisation routine. This ultimately results 
in a more scalable version of MCMC.

Although the proposed method will work for any stochastic optimisation routine, we develop and recommend 
using a new variant of the BSGD optimisation algorithm, called subsampling IRLS with stochastic gradient descent (S-
IRLS-SGD), which performs well in practice. The algorithm is available as an R package called irls.sgd (https://
github .com /jonlachmann /irls .sgd). We also provide some modifications to the stochQN package [15] implementing SQN, 
adaQN [28] and oLBFGS [40] with more efficient implementations of the gradient and Hessian-vector product at https://
github .com /jonlachmann /stochQN. These algorithms are also evaluated in this paper but are not recommended due to in-
ferior performance observed in practice for this specific context. Further, we have also created a package called GMJMCMC
(https://github .com /jonlachmann /GMJMCMC) which provides an implementation of the mode jumping MCMC (MJMCMC) 
algorithm [25]. This implementation can be combined with any estimator of the marginal likelihood, including SGD, BSGD, 
S-IRLS-SGD or SQN forming the time-inhomogeneous MCMC (TIMCMC) algorithm that we propose in this paper. All three 
of these packages are implemented in the R programming language, but computationally intense parts are written in C++ 
to additionally enhance scalability. These packages provide an implementation of the suggested approach that aims to be 
ready to use out of the box. Results from extensive simulations as well as real data examples are presented to illustrate the 
performance of the proposed approach.

The rest of the paper is organised as follows: The class of GLMs and a general standard inferential procedure for Bayesian 
model selection are presented in Section 2. The suggested approach to combine stochastic optimisation and MCMC through 
34
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a TIMCMC algorithm is discussed in Section 3. Further, theoretical convergence results and details on the practically rec-
ommended choice of stochastic optimisation and MCMC are provided in this section. More specifically, we introduce the 
S-IRLS-SGD algorithm used for computing the marginal likelihood. In Section 4, we first compare various stochastic optimi-
sation methods on a simulated dataset to show that the recommended S-IRLS-SGD is a reasonable choice in practice. Then, 
the proposed combination of S-IRLS-SGD and MJMCMC algorithm is applied to several simulated datasets to confirm the 
theoretical results of the paper. Finally, a real data example is analysed, where full enumeration using IRLS (ground truth) 
is compared to the approximations obtained after 15000 MJMCMC iterations using IRLS, S-IRLS-SGD and SQN respectively. 
Section 5 concludes the paper and gives directions for further research. Additional details and examples are provided in 
Appendices A-F.

2. Model selection for generalised linear models

We will first introduce the notation for our statistical model. Then a description of standard procedures for Bayesian 
variable selection and their limitations will be presented.

2.1. The model

We consider the following generalised linear model:

yi|μi, φ ∼f(y|μi, φ), μi = h−1 (ηi) , (6)

ηi =β0 +
p∑

j=1

γ jβ j xi j. (7)

Here, yi is the response variable while xij, j = 1, ..., p are the covariates. We assume that f(y|μ, φ) is a density from the 
exponential family with corresponding mean μ and dispersion parameter φ. Applying the link function h(·) to μi , the 
specific mean of individual i, yields ηi which is modelled as a linear combination of the covariates. The latent indicators 
γ j ∈ {0, 1}, j = 1, ..., p define if covariate xij is to be included in the model (γ j = 1) or not (γ j = 0) while β j ∈R, j = 0, ..., p
are the corresponding regression coefficients.

To put the model into a Bayesian framework we have to assign prior distributions to all parameters. Concerning the 
model structure, we assume

γ j|q ∼Binom(1,q), j = 1, ..., p. (8)

Here, q is the prior probability of including a covariate into the model. For the sake of simplicity, prior distributions for 
different γ j ’s are assumed to be independent and identical. The specific choice of priors for β and φ will be discussed 
in Section 4 for the specific applications. For posterior distributions we adopt the common notation of conditioning on 
y = (y1, ..., yn), which implicitly also includes conditioning on {xij, i = 1, ...,n, j = 1, ..., p}.

Given a set of p covariates, we can define a specific model through the vector m = (γ1, ..., γp). Following the notation 
used in the Introduction, denote the model space containing 2p possible models as M. Also for the time being, assume the 
marginal likelihoods p(y|m) are available. Our main goal will be Bayesian model selection in which case our interest is in 
the posterior model probabilities (4).

2.2. MCMC for Bayesian variable selection

If the marginal likelihood (1) can be computed for every model, the exact model posteriors follow from Equation (4). 
However, for a larger model space, this is often not computationally feasible. Alternatively one can obtain estimates of 
the posterior probabilities using an MCMC algorithm. For example, the acceptance probabilities from Equation (5) yield 
the Metropolis-Hastings algorithm, which introduces some proposal distribution q(m�|m) on the marginal space of models. 
Assuming that a set of models {ms, s = 1, ..., T } sampled from p(m|y) is available, the standard Monte Carlo estimator (MC) 
of the posterior is

p̂(T )
MC (m|y) = T −1

T∑
s=1

I(m(s) =m). (9)

Alternatively, the renormalised estimator [RM, 13] of the marginal posterior can be applied:

p̂(T )
RM(m|y) = p(y|m)p(m)∑

m′∈M(T )
V

p(y|m′)p(m′)
I(m ∈ M(T )

V ). (10)

Here, M(T ) denotes the set of all unique models among the sampled models.
V
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The estimates from both of these estimators will, under standard assumptions, converge to the true posterior when the 
number of iterations T → ∞, but the RM estimates will typically converge faster [13,25].

It is straightforward to see that based on these two estimators we can obtain estimators of the posterior marginal 
probability (PMP) for any given variable as

p̂(t)
MC (γ j = 1|y) =

∑
m∈M(t)

V

I(γ j = 1)p̂(t)
MC (m|y) (11)

and

p̂(t)
RM(γ j = 1|y) =

∑
m∈M(t)

V

I(γ j = 1)p̂(t)
RM(m|y). (12)

2.3. Mode Jumping MCMC (MJMCMC)

The distribution of models will often be multi-modal. Sampling from a complicated multi-modal distribution using stan-
dard MCMC algorithms, such as the Metropolis-Hastings algorithms often leads to problems. A proposal distribution needs 
to be chosen in a way that allows for both thorough exploration of a nearby mode, as well as the possibility to make tran-
sitions to other modes in the model space being explored. Choosing a proposal that makes mostly small steps will explore 
the current location thoroughly, but almost never escape it. On the other hand, a proposal that suggests large jumps will 
only rarely find the large jumps to be accepted since the algorithm will end up in models of low probability with respect 
to the target distribution being explored.

To solve this problem, [44] introduced mode jumping proposals, creating the MJMCMC algorithm for continuous variables. 
Later, [25] adapted it to work for discrete binary variables, used in the case of model selection. Assume that the current 
state is m, proposals are then generated in three steps. First, a large jump is made by swapping a large proportion of the 
binary variables γ j → 1 −γ j with a kernel ql(·|·), giving m�

0. Second, local optimisation is performed [based on the theory of 
combinatorial optimisation, 6] with a kernel qo(·|·), giving m�

1. Finally, a small perturbation of the local optimum is made by 
swapping a small proportion of the binary variables with a proposal qr(·|·), giving m� . To be able to calculate the acceptance 
probability, two backward intermediate states are also calculated to get the reverse path m� → m0 → m1 → m. Following 
the description from [25], this process is described in more detail in Algorithm 1. A proof of convergence was given in [44]
for the continuous case and adapted to the discrete case in [25]. The details on the kernels ql(·|·), qo(·|·), and qr(·|·) can also 
be found in [25].

In [44], the authors note that the mode jumping proposals should only be used a fraction of the time, the rest of the 
proposals are generated through regular Metropolis-Hastings kernels. They also demonstrate that the algorithm is efficient 
at exploring complicated target distributions with multiple modes by various examples. In [25], the efficiency in the context 
of model selection is demonstrated. Yet, the algorithm of [25] does not handle efficiently large data samples and hence can 
not be applied in such settings. In Section 3, we resolve this issue for a general MCMC algorithm, which will also be valid for 
MJMCMC as a special case that we use in practice. For the present paper, we reimplemented the MJMCMC algorithm from 
scratch in a library available at https://github .com /jonlachmann /GMJMCMC with computationally expensive blocks written 
in C++. To show the validity of the implementation, we reproduced the experiments of [25] with the new implementation. 
The results of these experiments are presented in Appendix B.

Algorithm 1: One step of the Mode Jumping proposal algorithm moving from current state m.
Sample a large set of components I ⊂ {1, ..., p} uniformly without replacement.
Generate m�

0 by swapping the components I of m.
Perform a local optimisation defined as m�

1 ∼ qo(m
�
1|m�

0).
Perform a small randomisation to generate the proposal m� ∼ qr(m

�|m�
1).

Reverse the large jump by swapping the components I of m� to generate m0.
Do a backwards optimisation m1 ∼ ql(m1|m0).
Calculate the probability of doing a small randomisation to the starting value qr(m|m1).
Set the next state of the chain to

m′ =
{
m� with probability α = r�

mh(m,m�;m1,m�
1);

m otherwise,
(13)

where

r�
mh(m,m�;m1,m�

1) = min

{
1,

p(m�|y)qr(m|m1)

p(m|y)qr(m�|m�
1)

}
. (14)
36
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2.4. Laplace approximation of the marginal likelihood

The integral from Equation (1) to compute the marginal likelihood p(y|m) usually does not have a closed-form solution. 
Computationally expensive calculations of marginal likelihoods become particularly problematic for model selection, where 
a large number of marginal likelihoods need to be calculated. For this reason, approximations are widely used, most of 
which are built on asymptotic properties of the posterior [2]. A prime example is the Laplace approximation, which will be 
central to our subsampling approach.

The Laplace method [29] makes use of the Taylor approximation to obtain approximate solutions of integrals. It 
is common to apply the Laplace approximation for the likelihood multiplied by the prior for the model parameters 
p(y|θm, m)p(θm). Let θ̃m denote the posterior mode. Then, the approximation of the marginal likelihood looks as follows:

p̂(y|m) = p(y|θ̃m,m)p(θ̃m|m)(2π)|θm|/2
∣∣∣S(θ̃m,m)

∣∣∣−1/2
, (15)

where S(θ̃m, m) is the Hessian of ln[p(y|θ̃m, m)p(θ̃m|m)] evaluated at the posterior mode θ̃m [2].
For most natural priors one can disregard its effect on the posterior for large n. This yields the Bayesian Information 

Criterion (BIC) [41] and a computationally efficient approximation of the marginal posterior. In that case, θ̃m is the MLE 
rather than the posterior mode in (15) and the Hessian S(θ̃ ,mm) is also replaced by (minus) the observed Fisher information 
matrix

Jn(θ̃m,m) = − ∇2 ln p(y|θm,m)

∣∣∣
θm=θ̃m

. (16)

Taking the logarithm and removing terms that for large n will be negligible, we get the approximation of the log marginal 
likelihood p(y|m) ≈ pL(y|m, ̃θm), where

ln pL(y|m, θ̃m) = ln p(y|θ̃m,m) − ‖θm‖0

2
lnn. (17)

Here, ‖θm‖0 is the l0 norm for the dimension of θm , i.e. the norm is counting the number of non-zero parameters. Asymp-
totically, the logarithms of (15) and (17) are equivalent. In the following, we will use the latter unless analytical marginal 
likelihoods are available. The approximation (15) becomes exact for a model with Gaussian observations and a normal prior 
for the coefficients β since the log of the likelihood for the observations is then taking a negative quadratic form; otherwise, 
it will have an error of order O(n−1). The numerical optimisation of θ̃m is usually performed via second-order optimisa-
tion methods like iterative reweighted least squares (IRLS) [5,39], where a weighted least squares (WLS) equation is iteratively 
reweighted with the inverse of residuals from the previous solutions. These methods involve using all data at each iteration. 
The computational complexity is dominated by the matrix multiplication and matrix inversion in the WLS step which has 
complexity O(max(m2n, m3)), where n is the number of observations and m is the number of parameters to be estimated. 
Hence, for a dataset with many observations, this complexity will be dominated by O(m2n) which grows linearly with the 
number of observations and quadratically in the number of parameters. For large datasets, this procedure often becomes 
too computationally demanding.

Using the Laplace approximation, we will turn our focus on the approximate model probabilities given by

pL(m|y) = p(m)pL(y|m, θ̃m)∑
m′∈M p(m′)pL(y|m′, θ̃ ′

m)
. (18)

In the next section, we will construct MCMC algorithms for sampling from pL(m|y) in case of tall data, where the compu-
tation of θ̃m is getting difficult.

3. A time-inhomogeneous MCMC algorithm

The main novelty of our procedure will be to handle the problem that even the posterior mode θ̃m will be difficult to 
compute when the sample size is large. To resolve this, a novel combination of Markov chain Monte Carlo and iterative 
procedures for updating estimates of the posterior modes is proposed. In the first part of Section 3, we introduce a very 
general algorithm for combining MCMC (including MJMCMC) and stochastic optimisation. Then, in Section 3.1, we provide 
general theoretical results for this type of algorithm. Finally, in Section 3.2, the general algorithm is linked to specific 
stochastic optimisation methods.

The suggested approach is directly linked to the general idea of simulating from a time-inhomogeneous MCMC [16]
allowing to rely upon the theory developed for TIMCMC [16,17,38]. Our TIMCMC for each time step has the following 
target:

p(t)
L (m|y) = p(m)pL(y|m, θ̃

(t)
m )∑

m′ p(m′)pL(y|m′, θ̃ (t)
m′)

. (19)
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Here, θ̂
(t)
m is some estimate of θ̃m at time t . In the following, we will assume we have a procedure generating a sequence 

{θ̂ t
m, t = 0, 1, 2, ...} such that

lim
t→∞ θ̂

t
m → θ̃m either (a) almost surely or (b) in probability for any m ∈ M. (20)

Algorithm 2 describes the full procedure. Here, init-mode() is a procedure which for a given model m finds an initial 
estimate θ̂

0
m while update-mode() is a procedure which updates the estimate given the current value.

Algorithm 2: The TIMCMC algorithm.

Select a model m(0) , put θ̂m = init-mode(m(0)) and MV = {m(0)};
for t = 1, 2, ... do

Select a model m� from some proposal distribution q(m�|m(t−1));
if m� /∈ MV then

Put θ̂m� ← init-mode(m�) and MV ← {MV , m�};
else

Put θ̂m� ← update-mode(m�, ̂θm� );
end
Set the next state of the chain to

mt =
{
m� with probability r�

mh(mt−1,m�);
mt−1 otherwise;

(21)

where

r�
mh(m,m�) = min

{
1,

p(m�)pL(y|m�, θ̂m� )q(m|m�)

p(m)pL(y|m, θ̂m)q(m�|m)

}
, (22)

where q(·|·) is the proposal of the addressed MCMC.
end

Remark 1. If init-mode() obtains the posterior mode directly and no further updates are made by update-mode(), 
the algorithm reduces to an ordinary Metropolis-Hastings algorithm with pL(m|y) as target distribution.

Remark 2. Sometimes the use of auxiliary variables for the generation of m� can be beneficial. Examples are the pseudo-
marginal MCMC [3] and MJMCMC (Section 2.3). In such cases, the main structure of the algorithm can still be used, but the 
acceptance probabilities need to be appropriately modified, e.g. q(·|·) will be qr(·|·) from Algorithm 1.

3.1. Theoretical properties

In this section, we will derive general conditions under which Algorithm 2 will have the appropriate convergence prop-
erties. Although the algorithm is of interest for many types of update procedures, we will consider here only those where 
the updating always increases the (log-)likelihood value [42]. We will later see how this can be easily achieved in practice.

Theorem 1. Assume M is finite with p(m) > 0 ∀m ∈ M and 
∑

m∈M p(m) = 1. Assume further that for any m ∈ M update-

mode() generates a sequence {θ̂t
m} such that pL(y|m, ̂θ

t
m) ≥ pL(y|m, ̂θ

t−1
m ) > 0 and the sequence converges (a) almost surely 

θ̂
t
m

a.s.−−→ θ̂m or (b) in probability θ̂
t
m

p−→ θ̃m . Assume the proposal distribution q(·|·) generates an irreducible Markov chain on M. 
Then

(I) the Markov chain {mt} induced by Algorithm 2 is irreducible and recurrent;
(II) for the renormalised estimate (10) it holds that

(a) p̂(t)
RM(m|y) a.s.−−→ pL(m|y) as t → ∞

(b) p̂(t)
RM(m|y) 

p−→ pL(m|y).

Proof. Part (I) Define p0 = minm∈M pL(y|m, ̂θ
(0)

m ) and p∞ = maxm∈M pL(y|m, θ̃m). For the specific classes of data distri-
butions considered, we have that p0 > 0 and p∞ < ∞. Then

0 < p0 ≤ pL(y|m, θ̂
(0)

m ) ≤ pL(y|m, θ̂
(t)
m ) ≤ pL(y|m, θ̃m) ≤ p∞ < ∞

which gives
38
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pt(m|y) ≡ p(m)p( y|m, θ̂
(t)
m )∑′

m p(m′)pL(y|m′, θ̂ (t)
m′)

≥ p(m)p0∑′
m p(m′)p∞

= p0

p∞
p(m),

showing that there is a lower bound for the model probabilities related to the acceptance probabilities given by (22). 
Combined with the assumptions about the proposal distribution q(·|·), this implies irreducibility. Since the space of states 
is discrete and finite, the Markov chain will also be recurrent.

Part (II) By recurrency, every model will be visited an infinite number of times as t → ∞. By the continuous map-

ping theorem [30], as t → ∞ we have that pL(y|m, ̂θ
(t)
m ) a.s.−−→ pL(y|m, θ̃m). Combining this with the fact that M is finite 

and following Bayes theorem and properties of convergence of the sums and products of converging sequences as t → ∞
we get for (a) that p̂(t)

RM(m|y) a.s.−−→ pL(m|y) and for (b) that p̂(t)
RM(m|y) 

p−→ p(m|y), where p̂(t)
RM(m|y) are obtained through 

Equation (10) with p̂L(y|m, ̂θ
(t)
m ) plugged in for p(y|m). �

A general result for MC estimates is available by applying the general theory about time-inhomogeneous Markov chains 
considered in [17]. An important criterion is their assumption A3 which is translated to our setting below:

Condition 1. Assume

1. for all θ = {θm, m ∈ M} ∈ � the transition matrix Pθ induced by the Markov chain in Algorithm 2 is irreducible and aperiodic for 
all θ ∈ �;

2. there exists a function V : M → [1, +∞) such that for any θ ∈ � there exist some constants bθ < ∞, δθ ∈ (0, 1), λθ ∈ (0, 1) and 
a probability distribution νθ on M such that∑

m′∈M
Pθ (m

′|m)V (m′) ≤ λθ V (m) + bθ for all m ∈ M; (23)

Pθ (m
′|m) ≥ δθνθ (m

′)I
(

V (m) ≤ 2bθ
1−λθ

− 1
)

for all m,m′ ∈ M. (24)

Theorem 2. Assume the conditions of Theorem 1 and Condition 1 hold. Then Monte Carlo estimates of model probabilities based on the 
frequencies of a MCMC (MJMCMC) algorithm will almost surely converge to the true posteriors p̂(t)

MC(m|y) a.s.−−→ pL(m|y) as t → ∞.

Proof. M is a finite discrete countable space of models, which is completely metrizable and separable. Hence, it is a Polish 
space. Combined with Condition 1, the results follow from Theorem 2.11 in [17]. �
Remark 3. The first part of Condition 1 is directly fulfilled under the regularity conditions of Theorem 1. For the second 
part, by defining V (m) ≡ 1, inequality (23) will also be directly fulfilled for bθ ≥ 1 and for all λθ ∈ (0, 1). Further, if � is 
limited to � = {θ : pL(y|m, θm) ≥ pL(y|m, ̂θ

(0)

m )} (which is satisfied by design of update-mode()) and if q(m′|m) > 0 for 
all m, m′ ∈ M (which is a reasonable MCMC proposal), then there will be a lower positive limit P > 0 of Pθ (m

′|m) and 
also equation (24) will be fulfilled by choosing νθ (m) = 1/|M| and δθ small enough and ∀λθ ∈ (0, 1). More general choices 
of proposals q(m′|m) should also be valid with proper choices of V (·) and the constants involved, but will not be pursued 
further here.

3.2. Constructing the update-mode()

We have a theoretical requirement for the update-mode() imposed by Theorem 1 in that we have a method generat-
ing a sequence of parameters converging either (a) almost surely or (b) in probability. A standard IRLS will converge surely 
and thus automatically satisfies both (a) and (b). But we are interested in using subsampling based stochastic optimisation, 
for which convergence might be in general more difficult to obtain.

Assume opt(θ̂
�
) to be any iterative optimisation routine starting at θ̂

�
. In Algorithm 3, we provide a very general 

approach based on generating a random variable ε(t) after optimisation opt(θ̌
(t)

) for each step t .

Algorithm 3: Randomisation after stochastic optimisation.

Initialise θ̌ (0)
and put θ̂ (0) = opt(θ̌

(0)
)

for t = 1, 2, ... do

Initialise θ̌ (t)
and generate a random ε(t) , put θ̆ (t) = opt(θ̌

(t)
) + ε(t) and

θ̂
(t) =

{
θ̆

(t)
if pL(y|m, (θ̆

(t)
) ≥ pL(y|m, (θ̂

(t−1)
);

θ̂
(t−1)

otherwise.

end
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This algorithm falls within the general class of random search techniques [31,42] for which convergence in probability is 
guaranteed under very mild conditions, for instance, if the random generator for θ̆

(t)
gives zero probability for repeatedly 

missing any set A of positive volume. This can easily be achieved by allowing ε(t) to have a positive density on the whole 
parameter space. For example, ε(t) can be chosen to be � × N(0, σ 2

rand), where Pr(� = 1) = prand = 1 − Pr(� = 0) and 
both σ 2

rand and prand can be selected to be very small in practice to not deviate drastically from the results produced by 
stochastic optimisation. With such ε(t) , Algorithm 3 easily satisfies the regularity condition of convergence in probability 
of the parameters required in Theorem 1 allowing to guarantee convergence of the renormalised estimates of posterior 
probabilities to the target. Now, we shall briefly discuss the possibilities for choosing opt(), whilst the detailed description 
of them is given in Appendix A.

The most well-known optimisation algorithm exploiting a subsampling approach that can be used as opt() is stochastic 
gradient descent (SGD). According to [36], the SGD optimisation algorithm asymptotically converges to a maximum of a 
concave function. SGD is a first-order optimisation method, which uses an unbiased estimate of the gradient of the objective 
function based on just one observation of the data to decide in which direction a step will be taken. If one uses several 
random observations to compute an unbiased estimate of the gradient of the objective function, the algorithm is referred 
to as batch SGD (BSGD) which is another choice of opt(). If one uses a full sample, the algorithm collapses to a regular 
gradient descent (GD) for which the true gradient is used. GD is not stochastic and as such is not of interest to be used 
as opt(). For these first-order optimisation algorithms with an appropriately chosen step size, the rate of convergence is 
generally Q -linear [32] for a function with a sufficiently smooth gradient.

One of the most important advances in the field of nonlinear optimisation has been the emergence of quasi-Newton 
methods [8]. These methods build on approximations of the Hessian using only information about the gradient and are 
applicable to both convex and non-convex problems. Versions that scale well with the number of variables such as limited 
memory methods have proven to be effective in a wide range of applications where the number of variables can be in the 
millions. However, in this paper, we are rather concerned with settings where n is large. For this situation, extensions of 
quasi-Newton methods to the stochastic situation, allowing for subsampling from the data, were proposed in [15,28,40]. 
This resulted in the emergence of stochastic quasi-Newton (SQN) optimisation. SQN methods rely on approximations of 
both the gradient and the Hessian of the objective function using subsampling from the data. Thus, these methods may 
be seen as advances in second-order stochastic optimisation, although according to [8], they still have only a sub-linear 
rate of convergence [32]. This does not give obvious theoretical advantages as compared to SGD or BSGD optimisation. In 
Appendix A, a classical SQN algorithm [15] as well as an adaptive quasi-Newton (adaQN) [28], and an online limited memory 
Broyden–Fletcher–Goldfarb–Shanno algorithm (oLBFGS) [40] are described. All three of them, in principle, can be used as 
opt() in Algorithm 3. We also updated the existing R library stochQN for these methods with calculations of the estimates 
of the gradient and (if required) Hessian-vector product in C++. This allowed improving the speed of SQN optimisation in R. 
Our improved package implementation is publicly available on GitHub at https://github .com /jonlachmann /stochQN. Also, if 
SGD/BSGD are used directly as update-mode() with no randomisation used, the theoretical almost sure convergence of 
both RM and MC estimates is valid. Technical details are given in Appendix A.

Even though we have a theoretical guarantee that Algorithm 3 will work in the asymptotic limit for any stochastic 
optimisation method, none of the standard stochastic optimisation methods allowed us in practice to achieve acceptable 
performance of TIMCMC within a limited number of iterations. In the following subsection, we describe an initialisation 
scheme for SGD and BSGD based on subsampling IRLS (S-IRLS) which resulted in good practical performance. However, it 
is important to note that there exist more recent advances in stochastic second-order methods available in the literature 
that might further improve the performance of TIMCMC when used as opt() in update-mode(). More specifically, the 
LISSA method suggested in [1] holds a strong promise for being used as our opt(). However, we leave testing it for further 
research due to the absence (to the best of our knowledge) of relevant R, C++ or C implementations that could be efficiently 
integrated into our TIMCMC algorithm.

3.2.1. Subsampling IRLS with BSGD
The main drawback of SGD and BSGD is that the number of iterations required for convergence may depend crucially on 

the quality of their starting points. If starting in a bad region of the parameter space, which is not unlikely for randomised 
starting points, it might take SGD, and BSGD prohibitively long to converge, making them of little use for our TIMCMC 
in practice. Also, the main problem of SQN methods is that the approximate Hessian becomes quite unstable for highly 
correlated data, making them perform poorly in such cases. To resolve the issues above, we propose an algorithm that 
obtains the starting points for SGD using a Subsampling IRLS (S-IRLS) algorithm. S-IRLS is a standard IRLS procedure [5,39], 
where the weights in a weighted least squares equation are iteratively reweighted with the inverse of residuals from the 
previous solutions and most of the weights at each iteration are randomly set to zero. This corresponds to that only a 
subsample of data is used at each iteration. After S-IRLS is run for a number of iterations, SGD or BSGD is run for more 
stable convergence. The overall idea is that S-IRLS, being a quasi-Newton method, is able to quickly provide a rough estimate 
of the parameters. However, due to the in some cases unstable Hessian estimates, SGD (BSGD) is then run with the S-IRLS 
estimate as a starting point to practically and theoretically guarantee the convergence to the mode. The resulting algorithm 
is abbreviated as S-IRLS-SGD in what follows.

In S-IRLS, at each iteration a random subsample is drawn with selection probabilities proportional to w + εw , where w
is the current weight vector and εw is used to regularise the sampling procedure and make sure that each observation can 
40
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Algorithm 4: Subsampling Iteratively Reweighted Least Squares (S-IRLS). Subscript S to a vector relates to the sub-
vector with elements corresponding to the subsample S .

Initialise the regression coefficients β̂0 and put wi = 1 for all i.
Select a random subsample S ⊂ {1, ...,n} of size b.
Calculate the linear predictor η̂S = xT

S β̂0 and mean vector μ̂S = h−1(η̂S ).
for v = 1, 2, ..., V do

Calculate ξ S = dh−1(ηS )

dηS

∣∣∣ηS =η̂S
, zS = η̂S + (yS − μ̂S )/ξ S and σ 2

μ,S = Var(yS ).

Update the weights for the current subsample wS =
(
ξ2

S /σ 2
μ,S

)0.5
and put W S = Diag(wS ).

Update the values of β̂v according to the cooling schedule

β̂ v = τv β̂
�

v + (1 − τv )β̂ v−1 (25)

and β̂�

v = (xT
S W SxS )−1xT

S W S zS .
Select a new subsample S ⊂ {1, ...,n} of size b with probabilities proportional to wi + εw , where w is the current vector of weights.
Calculate the new linear predictor η̂S = xS β̂v and mean vector μ̂S = h−1(η̂S ).
Calculate the estimated deviance dv based on the current subsample S .
if (dv − dv−1)/|dv−1| > δexpl then

Reset the values of β̂v to those from two iterations ago and halve the temperature:

β̂ v = β̂ v−2, τv = 0.5τv . (26)

Recalculate the new linear predictor η̂S = xT
S β̂ v and mean vector μ̂S = h−1(η̂S ).

end
end

be sampled. This way, we can estimate the expected information matrix xT diag(w)x on a subsample and the complexity is 
reduced to O(max(m2b, m3)), where b is the size of our subsample. The algorithm is described formally as Algorithm 4. In 
this algorithm, one needs to set a number of tuning parameters for optimal performance, these are

• b: size of subsamples
• V : total number of iterations
• τ0, r, vconst: three parameters which determine the temperature τv in equation (27)
• δexpl: threshold on the relative increase of deviance

The temperature τv which is used to improve the convergence properties of the algorithm determines the rate at which 
β is allowed to change between iterations, see Equation (27). We have chosen to use what is called a constant - exponential 
decay cooling schedule, which means that the temperature is kept constant for some initial iterations determined by vconst , 
after which it is subject to exponential decay

τv = τ0 · rmax(v−vconst,0). (27)

This kind of cooling is also found in some SGD implementations to homogenise the iterative solutions and avoid an un-
reasonably large impact from an unfortunate subsample. The variances σ 2

μ,S needed for the calculation of the weights are 
obtained through standard formulas related to generalised linear models. Note that these variances are only needed up to a 
proportionality constant, making the dispersion parameter φ in (6) unnecessary to specify.

S-IRLS is able to quickly approach the vicinity of the optimal solution even when the starting point is far from it. 
However, when approaching it, the Hessian estimates may become rather unstable. This problem is taken into account by 
detecting what we call exploding deviance, which we define to be the case when the estimated deviance increases by a factor 
larger than δexpl. This happens more often the smaller the size of the subsample because then the estimate of the Hessian 
will be more unstable. If this occurs, following popular IRLS implementations for GLM from the R library fastglm, the 
current estimate β is set to βt−2 and the temperature is halved to avoid a loop of deviance explosions and backtracking. 
The number of S-IRLS iterations, V , is one of the tuning parameters. It can be set rather small, i.e. below 100. If V = 0, 
a random initialisation is used, and S-IRLS-SGD collapses to either SGD or BSGD depending on the subsample size chosen. 
The implementation of SGD, BSGD, and S-IRLS-SGD with efficient calculations of computationally intensive parts written in 
C++ is available on GitHub at https://github .com /jonlachmann /irls .sgd.

4. Experiments

In this section, we first provide in Example 1 an empirical evaluation of the performance of IRLS, BSGD, SQN, adaQN, 
oLBFGS, and S-IRLS-SGD to motivate the use of S-IRLS-SGD in the following simulation-based examples. Then, in Example 2, 
we evaluate how S-IRLS-SGD based on different sub-sample sizes with multiple revisits of each model works for estimating 
the marginal posterior inclusion probabilities under full enumeration with a controlled number of revisits of each model. In 
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Fig. 1. Absolute correlation between the exogenous x variables for the data used in Examples 1 and 2. The two variables x2, x9 are highly correlated, with 
the remaining variables having low to moderate correlation.

Example 3, we show how S-IRLS-SGD works in combination with MJMCMC on several simulated datasets of different sizes 
and with different probability distributions for the responses. Finally, in Example 4, we analyse a real dataset and compare 
the performance of IRLS, S-IRLS-SGD, and SQN.

For Examples 1-3, several simulated datasets were generated. The datasets consist of one dependent variable y, and 
15 independent variables x. We explored the cases with n equal to 10 000 and 100 000 observations. By combining the 
independent variables in all possible ways we can create 215 = 32 768 different linear models.

The data were generated in a way to be comparable to the examples in [14] and [23]. This means that we 
used the same covariance matrix for the independent variables x, and a vector of parameters proportional to β =
(0.48, 8.72, 1.76, 1.87, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0) when generating the dependent variable y . The covariance structure of the 
data is illustrated in Fig. 1. The coefficients β of the data generating model were adjusted to sample size n as follows:

β� = β√
n/100

. (28)

This will give approximately the same signal strength in the data as β did for 100 observations in [26]. The dependent 
variables y for n observations was generated according to the following distribution:

yi ∼ N(xT
i β

�,1). (29)

Data for logistic regression models were generated using the same covariates as for Gaussian models, creating dependent 
variables yi

� according to

yi
� ∼ Bernoulli

(
1

1 + exp (−(yi − ȳ))

)
. (30)

Here, ȳ is the sample mean of yi ’s with i ∈ {1, ..., n.}. Thus, we generated 4 datasets in total that are used in Examples 2 
and 3.

For all experiments, Zellner’s g-prior [47] was used for the coefficients with the parameter

g = 100√
n/100

.

This choice empirically ensures that a single model will not contain most of the posterior mass, avoiding the PMPs to 
collapse to either 0 or 1. This is important to ensure that the true PMPs are challenging to estimate, making it possible to 
examine how well different algorithms are performing. Also, in all the experiments, the prior inclusion probability q was 
set to 0.5 for all covariates.
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Table 1
Hyper-parameters of the compared algorithms, computational costs per iteration and their expected 
computational costs. Here, a model with p = 15 resulting in 16 parameters is assumed and the sam-
ple size n is 106 observations. Decay and α0 are the tuning parameters of exponential cooling for the 
sequence of step sizes αt for the BSGD optimisation routines [7]. � The step size at time t is given 
by α0 · 1/(

√
t/100 + 1).

Iterations % of n p + 1 decay α0 Cost per step Full cost

IRLS 5 × 100 100% 16 - - 2.56 × 108 1.28 × 109

BSGD 500 5 × 102 0.10% 16 0.99995 0.20 1.6 × 104 8 × 106

BSGD 1K 1 × 103 0.10% 16 0.99995 0.20 1.6 × 104 1.6 × 107

BSGD 5K 5 × 103 0.10% 16 0.99995 0.20 1.6 × 104 8 × 107

BSGD 10K 1 × 104 0.10% 16 0.99995 0.20 1.6 × 104 1.6 × 108

S-IRLS 7.5 × 101 0.10% 16 - - 2.56 × 105 1.92 × 107

SGD 5 × 102 0.10% 16 0.99000 0.05 1.6 × 104 8 × 106

S-IRLS-SGD 5.75 × 102 0.10% 16 - - - 2.72 × 107

SQN 2.5 × 103 0.10% 16 � 0.10 1.6 × 104 4 × 107

oLBFGS 2.5 × 103 0.10% 16 � 0.10 1.6 × 104 4 × 107

adaQN 2.5 × 103 0.10% 16 � 0.10 1 × 103 2.5 × 106

Fig. 2. Boxplots of total computational time (left) and errors of estimated deviances (right) for different optimisation algorithms and tuning parameters 
from Table 1. For four best ones see also Fig. C.13 in the Appendix C of the article, which gives a higher resolution.

4.1. Example 1: simulated data (stochastic optimisation)

In the first experiment, the simulated dataset with the binary dependent variable, and 1 million observations was used. 
For this example, a full enumeration of all the 32 768 possible models was carried out using IRLS and the 128 models with 
the highest posterior mass were selected. These models were then re-evaluated using different optimisation algorithms of 
interest. 20 runs per model for each setting of each of the algorithms were performed. These algorithms and their tuning 
parameters are presented in Table 1. This table also lists theoretical computational costs for the addressed methods and 
tuning parameters.

In Fig. 2, we present boxplots of computational time (left) and errors of estimated deviance (right). As expected from the 
theoretical complexities of the algorithms in Table 1, the addressed setting of S-IRLS-SGD initialisation gives a reasonable 
computational time compared to running BSGD, SQN, adaQN, and oLBFGS or using the full IRLS. Furthermore, the deviations 
of estimated deviance from the true one are the smallest for S-IRLS-SGD. For this reason, we shall focus on the S-IRLS-SGD 
variant of BSGD in the simulation experiments to follow. The second best stochastic method that might be of interest is SQN 
according to Fig. 2. For this reason, we will additionally compare using S-IRLS-SGD and SQN as opt() in update-mode()
in the real data example.

4.2. Example 2: simulated data

For this example, we performed full enumeration of all the 32 768 possible models using regular IRLS and S-IRLS-SGD 
with subsample sizes of 20%, 10%, 5%, 1%, 0.75%, 0.5%, 0.25%, 0.1% and 0.05% on both 10 000 and 100 000 observations and 
for both Gaussian and logistic models. Each experiment was repeated 20 times in order to create confidence bands for the 
estimates.
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To evaluate the performance of the S-IRLS-SGD algorithm used as opt() in update-mode(), it is directly compared to 
regular IRLS. The parameters of interest are the posterior marginal probabilities (PMPs) of including the independent variables 
p(γ j = 1|y). S-IRLS-SGD was set to run 20 S-IRLS iterations for initialisation followed by 250 BSGD iterations for Gaussian 
models and 75 S-IRLS and 500 BSGD iterations for logistic models for all the experiments.

For each subsample size in S-IRLS-SGD, the absolute difference to the true value was calculated for the PMP of each γ j . 
The same was also done using the best estimate for each model from 5, 10 and 20 runs of the algorithm. The mean of the 
20 runs for 10 000 observations of logistic models, with 95% confidence intervals is presented in Fig. 3. Also, we illustrate 
lines for the estimates created from the 5, 10, and 20 runs by selecting the maximum estimate for each model across these 
runs. The most apparent tendency is that with the increasing size of the subsamples used in S-IRLS-SGD the estimates are 
getting closer to the true values. In this example, using less than 1% of the data gives already quite acceptable results. We 
also notice that when selecting the best estimate per model using a higher number of runs, the absolute difference to the 
true values gradually decreases.

Additional plots for 100 000 observations with logistic models, as well as 10 000, and 100 000 observations with Gaussian 
models are available in Figs. D.14, D.15 and D.16 in Appendix D. In these figures, we see similar trends.

4.3. Example 3: simulated data (MJMCMC)

In Example 3, we perform Bayesian variable selection with MJMCMC using Algorithm 3 with S-IRLS-SGD as opt()
algorithm in update-mode(). We present results for the renormalised estimate (12), for the Markov chain estimate (9)
and additionally for estimate (4) based on full enumeration where marginal likelihoods are estimated via subsampling. In 
these experiments, estimates of the PMP can be compared with the true values obtained from (4) using the full dataset. 
Following [14] and [25], we assess the performance of algorithms using the root mean square error (RMSE), which for K
independent runs of the MJMCMC can be calculated using

RMSE(γ j) =
√∑K

k=1

[
p̂k(γ j = 1|y) − p(γ j = 1|y)

]2

K
. (31)

Here p̂k(γ j = 1|y) is the estimate obtained in the kth run. We will show empirically that under subsampling (using the 
same update-mode()) MJMCMC achieves better results than the full enumeration (full enumeration is also run with 
stochastic optimisation and with exactly the same sub-sample size and tuning parameters but a single visit of every model).

Using the data from Example 1, MJMCMC was run using both regular IRLS and S-IRLS-SGD with a subsample of size 5%, 
1%, 0.75%, 0.5% and 0.25%, respectively. The algorithm was run 20 times for each subsample size and each run was allowed 
to perform 33 000 iterations. For the MC (11), RM (12) and full enumeration estimators, the marginal inclusion probabilities 
for the 15 covariates were estimated. These estimates were compared to the true values by calculation of the RMSE as 
defined in Equation (31). S-IRLS-SGD was set to run 20 S-IRLS and 250 BSGD iterations for Gaussian models and 75 S-IRLS 
and 500 BSGD iterations for logistic data for all the experiments.

To be able to assess how well the algorithm converges, the RMSE was calculated for the first 1 000, 2 000,..., 33 000
iterations. The results for the data with 100 000 observations are presented in Figs. 4 and 5. Additionally, Figs. E.17 and E.18
in Appendix E contain the results for the data with 10 000 observations. In all of the figures, we also present the RMSE for 
the full enumeration calculated using the same settings for S-IRLS-SGD.

Regarding the results for the Gaussian data, we see in Figs. 4 and E.17 that the MC estimates perform better than 
their RM counterparts when using subsampling. Further, the full enumeration performs worse than both estimates for all 
subsamples with a size smaller than 5%. At 5% the MC estimate outperforms full enumeration after around 5 000-10 000
iterations while the RM estimate roughly coincides with it from around 10 000. Convergence for the RM estimates appears 
to become very slow after the first 10 000 iterations. To some extent, this is also true for the MC estimates, although not as 
pronounced.

The results obtained for the logistic models show a very different pattern. In Figs. 5 and E.18, we see that for every 
subsample size, the RM estimates perform very well, converging very close to the true distribution after very few iterations. 
On the other hand, the MC estimates quickly attain an RMSE of between 0.1-0.15 after which the convergence becomes 
very slow. Here, however, it should be noted that the approximations of the marginal likelihoods are used, i.e. Laplace 
approximations do not yield exact results under Bernoulli observations. Looking at the results as a whole, we can, as 
expected, see that a larger subsample provides a better estimate, albeit at a higher computational complexity per iteration.

4.4. Example 4: real data (MAGIC gamma telescope dataset)

As a real data example, we will look at the MAGIC Gamma Telescope Dataset from the UCI database available 
at https://archive .ics .uci .edu /ml /datasets /magic +gamma +telescope. The dataset is concerned with the registration of high-
energy gamma particles in a ground-based atmospheric Cherenkov gamma telescope using some kind of imaging technique. 
The response is a binary variable y of whether the telescope detects one of two classes {g, h}, standing for gamma (signal) 
or hadron (background). There are 10 explanatory variables in the dataset. All of them are numerical. The full sample 
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Fig. 3. The absolute difference for marginal posterior probabilities for full enumeration of 32 768 logistic models using 10 000 observations from the dataset 
in Example 2. 20 runs were performed and the black line shows the mean absolute difference, with grey 90% confidence intervals. The dashed and dotted 
lines show the absolute difference obtained by using the best likelihood estimate for each model that occurred during 5, 10 and 20 random runs.
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Fig. 4. Root mean squared error compared to the true distribution for MJMCMC using both regular IRLS and S-IRLS-SGD with varying subsample sizes. 
MJMCMC was run 20 times and for 33 000 iterations for every variant of the algorithm. The black solid and dotted lines show the mean RMSE for the 
20 runs, with the shaded areas showing 90% confidence intervals, for RM and MC estimates respectively. The dashed line shows the RMSE for the full 
enumeration using the same algorithm settings.

size is n = 19 020 with ng = 12 332 and nh = 6 688 corresponding to the number of signal and background observations 
respectively. The variables are as follows:

• f Length: major axis of ellipse [mm]
• f W idth: minor axis of ellipse [mm]
• f Size: 10-log of the sum of the content of all pixels [in photo]
• f Conc: ratio of the sum of the two highest pixels over f Size [ratio]
• f Conc1: ratio of highest pixel over f Size [ratio]
• f Asym: distance from the highest pixel to the centre, projected on the major axis [mm]
• f M3Long: 3rd root of the third moment along major axis [mm]
• f M3T rans: 3rd root of the third moment along minor axis [mm]
• f Alpha: angle of major axis with vector to origin [deg]
• f Dist: distance from the origin to centre of ellipse [mm]

Further, we added squared values of each explanatory variable to make the search problem less trivial, yet still feasible 
for full enumeration to obtain the ground truth. Thus, we end up with 20 covariates and hence explore the model space of 
220 models. The same model specifications as in the simulation examples with binary responses were used.

To obtain the ground truth, a full enumeration of all models with IRLS optimisation was run. The corresponding marginal 
inclusion probabilities are depicted in Fig. 6. We see that 12 covariates have a marginal inclusion probability close to 1, 5 
covariates - close to 0, and 3 somewhere in between.

Further, MJMCMC was run using regular IRLS, S-IRLS-SGD, and SQN algorithms. For the latter two, we used a subsample 
size of 1% per iteration. The MJMCMC algorithm was run 20 times for each update-mode() and each run was allowed to 
perform 15 000 iterations. Additionally, S-IRLS-SGD was set to run 75 S-IRLS and 500 BSGD iterations, whilst SQN was run for 
2 500 iterations. Using both the MC (11) and RM (12) estimators, the marginal inclusion probabilities for the 20 covariates 
were estimated. Following our simulation examples, these estimates were compared to the true values by calculation of the 
RMSE as defined in Equation (31). The RMSE was calculated for the first 500, 1 000,..., 15 000 iterations.
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Fig. 5. See caption of Fig. 4. Note that here the RM estimates have a very small error, for which reason they almost coincide with the x-axis in the plots.

Fig. 6. Real target marginal inclusion probabilities were obtained under full enumeration and full IRLS optimisation.

The results are presented in Fig. 7. For MJMCMC combined with IRLS, we see that the RM estimates become indistin-
guishable from the truth in less than 2 500 MJMCMC iterations. Whilst MC estimates converge at a significantly slower pace. 
Further, just as we saw for the simulated data with Bernoulli distributed responses, under S-IRLS-SGD, the RM converge 
to the proximity of the true distribution after very few iterations, after which the convergence becomes very slow. For the 
same settings, the MC estimates perform significantly worse, although they continue to converge at a quicker pace even 
after 12 000 iterations. Also, both MC and RM estimates under S-IRLS-SGD update-mode() are significantly worse than 
those obtained under full IRLS. RM under S-IRLS-SGD is on par (somewhat better) than MC obtained under IRLS. Lastly, 
SQN update-mode() performed significantly worse in the sense of both RM and MC estimates than the two competing 
approaches. Interestingly, under SQN, the MC based estimates are somewhat better than the RM ones.
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Fig. 7. Root mean squared error compared to the true distribution for MJMCMC using both regular IRLS, S-IRLS-SGD and SQN with a subsample size of 1% 
per iteration. MJMCMC was run 20 times and for 15 000 iterations for every algorithm. The black solid and dotted lines show the mean RMSE for the 20 
runs, with the shaded areas showing 90% confidence intervals, for RM and MC estimates respectively.

Fig. 8. Power and FDR for MJMCMC combined with IRLS, S-IRLS-SGD, and SQN optimisation as opt() in update-mode().

It might be hard to interpret what the obtained overall RMSEs mean for the variable selection in practice. Hence, we 
are additionally evaluating the performance of different update-mode() optimisation algorithms for the model selection 
task. Variables are selected according to the median probability model [21], which is a standard approach that has attractive 
theoretical properties [4]. The median probability model considers a covariate selected if its marginal inclusion probability 
is above 0.5. We compared IRLS, S-IRLS-SGD, and SQN used for update-mode() under both MC and RM estimates of the 
marginal inclusion probabilities. Furthermore, for each of the 20 runs performed for each scenario, we evaluated statistical 
Power and false discovery rates (FDR) under the median probability selection rule. Here, the truth is assumed to correspond 
to selection according to the median probability rule after the full enumeration of all 220 models. Box-plots of the results 
are summarised in Fig. 8 for Power and FDR. We observe that MJMCMC under full IRLS gives exactly the same results as 
full enumeration both for MC and RM estimates of the marginal inclusion probabilities. MJMCMC with S-IRLS-SGD used as
update-mode(), reaches both for MC and RM estimates a Power of 0.9 on average with some variation across the runs. 
The corresponding FDR is slightly above 0.1 on average for MC estimates and slightly below 0.1 for RM estimates, again with 
some variation across the runs. These results show that the performance under S-IRLS-SGD opt() in update-mode() is 
practically very reasonable with a fraction of time used for optimisation when compared to the full IRLS. Again, the SQN
opt() in update-mode() is performing significantly worse than other methods with an average Power of around 0.7 for 
MC estimates and 0.6 for the RM estimates. FDRs for MC and RM estimates under the SQN opt() in update-mode()
are also the highest with the former slightly below 0.2 and the latter - slightly above 0.2 on average. In spite of the rather 
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high RMSEs of the SQN approach its practical performance on the model selection task is still relatively reasonable, though 
by far not as good as the performance of S-IRLS-SGD.

To understand why model selection under SQN and S-IRLS-SGD opt()’s in update-mode() did not give perfect Power 
and FDR, we further depicted box-plots of the marginal inclusion probabilities of individual covariates for both MC and RM 
estimates. The results for MC and RM estimates respectively are presented in Figs. F.19 and F.20 in Appendix F of the 
paper. These results show that for some runs MC estimates of posterior inclusion probability under S-IRLS-SGD opt() in
update-mode() are deviating from the reference values for f Conc1, f Length2, and f Conc12. However, in general they 
are quite close to those obtained under the full IRLS. The same is true for the RM estimates, which had some false selection 
for f Asymp2 and f M3Long2 with a large variation across the runs for these two covariates. In some of the runs, perfect 
model selection takes place, whilst in other runs larger errors are observed. This is in line with the confidence bands of 
RMSE for RM estimates under S-IRLS-SGD depicted in Fig. 7. MJMCMC combined with SQN as the opt() in update-
mode() results in MC estimates that are always off the median probability model for f W idth, f Conc1, f M3T rans2 and 
f Alpha2 and sometimes off for f Dist , f Length2, f W idth2, f Size2, f Asymp2, and f Dist2. The RM estimates under SQN 
are similar: They are always off the median probability model for f W idth, and f Conc1, and f Alpha2 and sometimes off 
for all other covariates except for f Length, f Size, f M3Long , f Alpha, and f M3Long2, for which they are always correct.

We see that the accuracy under SQN appears to be substantially lower than that under IRLS and S-IRLS-SGD. SQN does 
not provide a better computational time than S-IRLS-SGD either. For that reason, we currently would not recommend using 
the SQN-based second-order stochastic optimisation in the update-mode().

5. Discussion

In this paper, we presented a novel approach to combining a stochastic optimisation algorithm for computing the 
marginal likelihood and MCMC algorithms for Bayesian model selection through a time-inhomogeneous Markov chain Monte 
Carlo approach. We also present a practical stochastic optimisation algorithm called S-IRLS-SGD which is designed to work 
well with the novel approach. In Example 1, we demonstrated that S-IRLS-SGD is better suited for estimating parameters 
for numerous models in the model space than standard stochastic optimisation algorithms including BSGD, SQN, adaQN and 
oLBFGS. The S-IRLS-SGD algorithm has been implemented as a package in the R programming language with computation-
ally intense blocks written in C++. It is publicly available at https://github .com /jonlachmann /irls .sgd. Also, SQN, adaQN and 
oLBFGS optimisation algorithms in R were improved by implementing computationally intense blocks in C++. The improved 
package is available on GitHub at https://github .com /jonlachmann /stochQN.

In Section 3, we presented a general TIMCMC algorithm and provided two theorems outlining possible strategies for 
combining stochastic optimisation of marginal likelihood algorithms and MCMC. By reestimating the models each time 
they are visited but always selecting the best estimated marginal likelihood considered so far, we show that both Monte 
Carlo and renormalised estimates will converge to the exact Laplace approximation of the marginal likelihood. For Gaussian 
observations and certain types of priors (e.g. g-priors), the approximation coincides with the exact marginal likelihood. 
Throughout the simulation examples, we have demonstrated how the results of Theorems 1 and 2 are confirmed in practice.

Firstly, to evaluate the performance of the S-IRLS-SGD algorithm to compute marginal likelihoods, we performed the 
experiments in Example 2. There, we compared the performance of S-IRLS-SGD with that of IRLS for obtaining a posterior 
distribution of the models by enumerating the whole model space. The results obtained show that we are able to get 
an acceptable level of precision given a rather small subsample size, encouraging us to continue on the chosen path. By 
selecting the highest estimate per model out of 5, 10 and 20 runs, we observed that more evaluations result in even 
better estimates. Thus, we were able to provide empirical support for Theorem 1, i.e. that multiple evaluations of a given 
model under S-IRLS-SGD provide convergence towards the true posterior distribution of the renormalised estimates of the 
posteriors of interest.

TIMCMC visits models of higher importance more often, which implies that the estimates for these models converge 
towards their true marginal likelihood faster than for any arbitrary model. This allowed us to hypothesise that under S-
IRLS-SGD for computing marginal likelihood, TIMCMC would be able to provide even better results than full enumeration 
using the same approximate optimisation algorithm. To demonstrate this, in Example 3, we combined S-IRLS-SGD with 
an MJMCMC algorithm into a TIMCMC framework. The experiments were carried out using simulated data. We confirmed 
that MJMCMC in most cases is able to provide a better estimate of the posterior marginal inclusion probabilities than full 
enumeration with the same settings for S-IRLS-SGD. For the logistic models, the RMSE of the RM estimates is very low, 
meaning that we are very close to the true distribution, even when we were just using 0.25% of the data at each iteration. 
For Gaussian data, S-IRLS-SGD in MJMCMC performs significantly worse, probably owing to the smaller budget for iterations 
used. Yet, a convergence trend was still numerically confirmed.

It is important to note that in some cases, the empirical rate of convergence of the implemented approach can deteri-
orate drastically after the algorithm has run for some time. To illustrate this, we tried to run the TIMCMC algorithm for a 
significantly larger amount of iterations than in the presented examples. The results obtained for one run with one million 
iterations (with a subsample size of 0.75% of the data having 100 000 observations) using the Gaussian data and model 
from Example 2 are shown in Fig. 9. There, we see that the renormalised estimate hardly improves after 200 000 iterations, 
whereas the MC estimate continues to converge even at around one million iterations, though at an extremely slow rate. 
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Fig. 9. Root mean squared error compared to the true distribution for MJMCMC using S-IRLS-SGD with a subsample size of 0.75%. MJMCMC was run for 
1 000 000 iterations. The dashed lines show the RMSE for the MCMC estimates and the solid lines show RMSE for the renormalised ones.

Additional theoretical and experimental studies are required in the future to understand why convergence often becomes 
slower when the algorithm reaches a certain number of iterations.

Also, in Example 4, we provide a real data example, where we first confirm the conclusions about the convergence 
seen in Example 3. In addition, we include the SQN method as an alternative stochastic optimisation algorithm to be used 
in TIMCMC. We see that TIMCMC coupled with S-IRLS-SGD performs significantly better than SQN coupled with TIMCMC. 
Also, we have shown that despite some small RMSEs of the marginal posteriors of interest that are still present after a 
limited number of TIMCMC iterations (that we typically can afford running in practice), the Power and FDR for variable 
selection (which one is mainly interested in) are on the mark.

Even though S-IRLS-SGD used as a stochastic optimisation was shown to work well, it must be noted that there is 
extensive literature and knowledge about stochastic optimisation algorithms which could be applied here, and we are certain 
that there is a lot of room for possible improvements. More specifically, various extensions to SGD are available, possibly 
providing better global convergence properties for ill-conditioned likelihood functions as discussed by [46]. For example, 
modern variants of SGD optimisation like Adam, Adagrad, RMSprop or others from [8] could be used instead of the basic 
BSGD algorithm or S-IRLS-SGD. Also, novel stochastic second-order methods are available. We have tested SQN, adaQN, and 
oLBFGS, which did not work that well in practice, but there exist more recent advances in stochastic second-order methods 
available in the literature that might well improve the performance of TIMCMC further when used as opt() in update-
mode(). More specifically, the LISSA method [1] seems promising to be used as our opt(). Yet, the focus of the paper was 
not to find the best performing stochastic optimisation method in combination with TIMCMC, but rather to give a principal 
novel way to combine a general stochastic optimisation and MCMC for computationally efficient Bayesian model selection 
through TIMCMC. We hope this framework will open new research directions in the future.

Lastly, as an alternative to the Laplace approximation for models with latent Gaussian structures, Integrated Nested Laplace 
Approximation (INLA) has emerged as an efficient approximation method [37]. In [24], it was shown empirically that INLA 
performs better than the Laplace approximation in various scenarios. It would, thus, be interesting to extend the sub-
sampling ideas proposed in this article to that context by combining them with INLA. Another interesting idea for future 
research is to apply the proposed methods of [35] when doing the final calculation of the deviance. This would further 
improve the speed of the only step in the current algorithm that depends on the full dataset. Yet, the methods from [35]
would break the regularity conditions of our Theorems 1 and 2, which means that additional theoretical studies would also 
be required to be able to incorporate it into our TIMCMC framework.
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Appendix A. Optimization procedures

A.1. Gradient descent (GD)

The classical gradient descent algorithm was first proposed by [10], but also independently by [22]. It works on a function 
f ∈ C1 (continuously differentiable) by taking steps in the direction of the negative gradient calculated at the current point 
θ . If the objective is to be maximised, at a given point θ̂

(t)
, one step is defined as adding α∇ f (θ̂

(t)
) to the current point. 

For a step size α that is small enough, it holds that f (θ̂
(t+1)

) ≥ f (θ̂
(t)

). This will lead to a monotonic sequence where 
f (θ̂

(t)
) is increasing, eventually reaching a maximum [8]. In our case, we are interested in maximising the log-posterior, i.e. 

f (θ) = ln p(y|x, θ) + ln p(θ), yet we shall continue this subsection with a general description of f (θ). We will further use 
f S (θ) when f is evaluated on a subsample S , e.g. f S (θ) = ln p(yS |xS , θ) + ln p(θ)

A.2. Stochastic gradient descent (SGD)

Originally proposed by [36], stochastic gradient descent (SGD) can be considered as a modification of regular gradient 
descent. Assume there are n observations. SGD works by replacing the gradient at each iteration with an approximation 
using only one data point, i.e. ∇̂ f (θ) = ∇θ [ln p(yi |xi, θ) + ln p(θ)] where i denotes one observation of the data chosen 
randomly at each iteration. The method also requires that the estimator of the gradient is unbiased, i.e. E[∇̂ f (θ)] = ∇ f (θ). 
The latter is easily satisfied when the data are assumed conditionally independent.

In contrast to using the full gradient, the unbiased approximation obtained will be very noisy and might for some steps 
cause the algorithm to make a move in an unfavourable direction. However, it is much less costly to compute, allowing for 
many more iterations to be performed inside the same computational budget. SGD has received a lot of recent attention 
in the machine learning community where it is the workhorse of neural networks among other techniques. An important 
reason for this is that it scales very well when the amount of data is large [8].

A.3. Batch stochastic gradient descent (BSGD)

A middle ground between GD and SGD is Batch SGD (BSGD). Here the gradient is still estimated, but this is done using 
a subset or batch of data at each iteration, with size b chosen at the users’ discretion. There exist variants that either go 
through the data in a fixed or random order. For the former, each batch consists of the b observations located immediately 
after the previous (starting at the beginning when all batches have been visited). The other alternative is to randomly 
sample b observations at each iteration. The iteration complexity when optimising the MLE is here O(bm), where m is the 
number of estimated parameters. Further, the convergence rate is generally between that of GD and SGD, owing to the more 
accurate (less noisy) approximation of the gradient [8].

A formal description of BSGD with new random samples at each iteration is provided in Algorithm 5. Here the step size 
is allowed to change with t . For b = 1, the algorithm reduces to SGD while for b = n it is equal to the GD algorithm. Many 
implementations apply other stopping criteria. It is, for instance, possible to run until no improvements larger than a small 
number ε are made, or for a set number of iterations.

Algorithm 5: Gradient descent with convergence tolerance ε > 0 and step size α.

Initialise a first solution θ̂ [0]
.

while |θ̂ t − θ̂ t−1| > ε do
Draw a subsample S of size b without replacement from {1, ..., n}.

Calculate the gradient based on the subsample: gS = ∇[ln p(yS |xS ; ̂θ (t) + ln p(θ̂
(t)

)].
Update θ̂ t+1 = θ̂ t + αt gS .

end

An essential requirement for the sequence {θ̂ (t)} is convergence to its mode (20), see Theorem 1. Such convergence 
guaranties are both based on some regularity conditions of the likelihood function p(y|x; θ) and on the shape of the step 
size sequence {αt}. For the generalised linear models considered here, these regularity conditions are satisfied, except for 
some degenerate cases like perfect separation, see [46] for details. If in addition, the step size sequence satisfies

∞∑
αt = ∞ and

∞∑
α2

t < ∞,
t=1 t=1
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then convergence in probability is guaranteed [8]. Criteria for convergence almost surely are considered in [33] where also 
more general (non-convex) settings are considered. More specifically, if we satisfy regularity conditions of Theorem 2 from 
[33], then θ̂

t
m

a.s.−−→ θ̂m . Hence, by Theorem 1 p̂(t)
RM(m|y) a.s.−−→ pL(m|y) and by Theorem 2, p̂(t)

MC (m|y) a.s.−−→ pL(m|y).

A.4. Stochastic Quasi-Newton methods

For this family of methods, we compute not only the estimates of the gradient on a sub-sample but also those of the 
Hessian, which is then added into the update rule. This results in a general Algorithm 6 presented below.

Algorithm 6: Stochastic quasi-Newton with convergence tolerance ε > 0 and step size α.

Initialise a first solution θ̂ [0]
.

while |θ̂ t − θ̂ t−1| > ε do
Draw a subsample S of size b without replacement from {1, ..., n}.

Estimate the gradient based on the subsample: gS = ∇[ln p(yS |xS ; ̂θ (t) + ln p(θ̂
(t)

)].
Estimate the Hessian Hs based on the sub-sample
Update θ̂ t+1 = θ̂ t + αt H S gS .

end

The three specific versions we implemented for this paper (SQN, adaAN, and oLBFGS) are different in how we are ap-
proximating Hs based on the sub-sample resulting in different computation costs and convergence properties. For additional 
details, see [8].

Appendix B. Reproducing previous results for MJMCMC

To verify that the implementation of MJMCMC contributed to this paper works as intended, some previous results from 
[25] were reproduced and compared against the original implementation. Examples B1 and B2 compare the performance of 
the new implementation of MJMCMC with the previous one using real and simulated data, the first example corresponds to 
Example 1 in [25] and the second one corresponds to Example 2 of the same paper.

Example B1: U.S. crime data
The U.S. Crime Dataset compiled by [45] contains crime rates for 47 U.S. states along with 15 covariates. Following [25], we 

will test our implementation of MJMCMC against it to verify that the algorithm performs as it should. With one dependent 
variable and 15 independent, it is possible to create 215 different models, including one with only an intercept. [25] followed 
[14] in using Zellner’s g-prior [47] with g = 47, something we will also do. This gives us the exact marginal likelihood

p(y|m) ∝ (1 + g)(n−p−1)/2(1 + g[1 − R2
m])−(n−1)/2, (B.1)

where R2
m is the coefficient of determination for the model m.

Since the total number of possible models is reasonably small, we began by enumerating all of them to calculate the 
true marginal distribution of the components of the m vector. We then ran MJMCMC on the data 20 times for a number of 
iterations to visit approximately the same number of unique models as in the results we wanted to replicate. The reason 
for the approximation is that the previous implementation of MJMCMC is configured such that it runs until it encounters a 
fixed number of either unique or total models, whereas our implementation runs for a fixed number of iterations. For every 
parameter estimate, we calculated the RMSE for each indicator variable γ j as defined in Equation (31).

The true values and the RMSE multiplied by 100 of the renormalised (RM) and MCMC (MC) estimates are presented in 
Table B.2, along with the corresponding values from [25]. The posterior mass captured by MJMCMC is also shown there. We 
can see that our results for the RM estimates are very similar to those previously reported, and the MC estimates are a bit 
better than the ones obtained in the original implementation. It should however be noted that the total number of models 
visited in our runs is a bit higher, something caused by the different ways the two implementations of the algorithm are 
tuned. For a comparison to competing algorithms such as BAS, MC3 and RS, we refer to Table 3 of [25] and to [14].

To demonstrate the convergence of the algorithm, we also show the RMSE plotted against the number of iterations for 
both RM and MC estimates in Fig. B.10. We note here that the RM estimates converge quicker and more stably towards the 
true distribution for all of the components.

Example B2: simulated data for logistic regression (MJMCMC)
In [25], a dataset was created to be used for logistic regression where the model space is highly multi-modal, aiming 

to properly assess the convergence in this more complicated setting. The covariance structure is visualised in Fig. B.11. The 
data consists of 20 independent variables x and one dependent variable y, each with 2 000 observations. This results in 
220 = 1, 048, 576 possible models, providing a model space that is much larger and more computationally intensive to fully 
enumerate than in the previous example. This highlights the need for a good search algorithm to properly explore it without 
having to calculate every possible model. In this example, the number of observations is also larger. Hence, even the time 
it takes to calculate a single model becomes much higher than in the previous example.

We used the AIC prior from [12] to be able to compare the results with those of [25]. Using AIC, the marginal likelihood 
is approximated via the deviance D(y) as
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Table B.2
RMSE × 100 for RM and MC estimates of m marginal inclusion probabilities based on 2 × 20
different runs of MJMCMC in Example B1. Also shown is the mean RMSE and total posterior 
mass captured. Previous results reported in [25] in parentheses.

True value RM MC RM MC

γ8 0.16 7.76 (6.57) 6.27 (10.68) 6.22 (5.11) 6.19 (10.29)
γ13 0.16 7.42 (7.46) 6.32 (10.54) 6.04 (5.60) 5.96 (10.19)
γ14 0.19 8.62 (8.30) 6.33 (12.43) 7.01 (6.30) 6.26 (12.33)
γ12 0.22 7.96 (6.87) 8.71 (13.61) 6.56 (5.57) 6.25 (13.64)
γ5 0.23 7.69 (6.30) 6.51 (13.45) 5.76 (4.59) 5.64 (13.65)
γ9 0.23 9.28 (9.49) 7.18 (16.21) 7.08 (7.40) 6.87 (16.21)
γ7 0.29 7.10 (4.37) 4.84 (13.63) 4.93 (3.45) 3.36 (12.73)
γ4 0.30 5.66 (6.18) 8.75 (19.22) 3.58 (3.79) 6.27 (17.31)
γ6 0.33 8.26 (8.61) 6.94 (19.71) 5.53 (6.14) 4.55 (19.49)
γ1 0.34 9.40 (11.32) 7.05 (22.68) 7.10 (7.29) 6.17 (20.50)
γ3 0.39 4.40 (3.95) 9.93 (11.13) 2.00 (2.38) 7.41 (6.99)
γ2 0.57 3.77 (5.92) 13.97 (13.21) 2.93 (3.82) 11.00 (9.03)
γ11 0.59 3.81 (3.57) 9.61 (13.49) 1.43 (2.37) 5.96 (15.94)
γ10 0.77 6.44 (7.62) 13.32 (7.28) 5.23 (5.97) 10.94 (4.78)
γ15 0.82 5.98 (9.23) 14.51 (4.45) 5.04 (6.89) 12.34 (5.85)

Mean RMSE 6.90 (7.05) 8.68 (13.45) 5.10 (5.11) 7.01 (12.60)
Total mass 0.44 (0.58) 0.58 (0.71)
Unique models 1900 (1908) 3219 (3237)
Total models 6200 (3276) 11200 (5936)

Fig. B.10. RMSE compared to the true distribution for MJMCMC run with the US Crime data in Example B1. MJMCMC was run 20 times and for 10 000
iterations. The black solid and dotted lines show the mean RMSE for the 20 runs, with the shaded areas showing 90% confidence intervals, for RM and MC 
estimates respectively.

p̂(y|m) ∝ −1

2

(
D(y) + 2

∑
γi

)
. (B.2)

To provide a baseline to compare against we first performed a full enumeration of every possible model. This both gave us 
exact values and verified that our marginal likelihood was correctly implemented. We then ran MJMCMC 20 times for 32 768
iterations to be able to extract subsets of these runs that are comparable to the previous results. The RMSE after visiting a 
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Fig. B.11. Absolute correlation between the exogenous x variables for the data used in Example 2. This complicated correlation structure ensures that the 
distribution of models is multi-modal.

Table B.3
Example B2. RMSE × 100 for RM and MC estimates of m parameters based on 2 × 20 different 
runs of MJMCMC. Also shown is the mean RMSE and total posterior mass captured. Previous 
results reported in [25] in parentheses.

True value RM MC RM MC

γ6 0.29 7.96 (7.38) 7.20 (15.54) 5.56 (4.54) 7.20 (16.62)
γ8 0.31 7.83 (6.23) 5.47 (15.50) 5.17 (3.96) 5.48 (16.94)
γ12 0.35 4.92 (4.86) 8.99 (14.62) 3.19 (2.78) 8.37 (13.66)
γ15 0.35 4.82 (4.55) 10.92 (15.24) 2.49 (2.56) 11.73 (15.45)
γ2 0.36 5.15 (4.90) 6.88 (16.52) 3.45 (2.92) 7.08 (17.39)
γ20 0.37 6.30 (4.82) 6.90 (14.35) 4.13 (2.66) 6.90 (14.08)
γ3 0.40 6.89 (9.25) 12.20 (20.93) 4.23 (5.65) 12.87 (22.18)
γ14 0.44 2.40 (3.14) 3.76 (17.54) 1.36 (1.58) 2.84 (16.24)
γ10 0.44 2.82 (4.60) 6.35 (18.73) 1.09 (2.29) 6.13 (17.90)
γ5 0.46 2.17 (3.10) 4.07 (17.17) 0.98 (1.53) 2.73 (16.97)
γ9 0.61 4.02 (3.68) 3.76 (16.29) 2.51 (1.63) 3.07 (13.66)
γ4 0.88 6.65 (5.66) 16.30 (6.70) 5.48 (3.74) 16.13 (6.26)
γ11 0.91 3.97 (5.46) 14.27 (6.81) 2.92 (3.95) 14.13 (6.90)
γ1 0.97 2.05 (1.90) 13.46 (1.74) 1.70 (1.35) 13.21 (1.34)
γ13 1.00 0.00 (0.00) 11.31 (0.43) 0.00 (0.00) 11.13 (0.32)
γ7 1.00 0.00 (0.00) 6.88 (0.57) 0.00 (0.00) 6.79 (0.41)
γ16 1.00 0.00 (0.00) 6.37 (0.41) 0.00 (0.00) 5.99 (0.33)
γ17 1.00 0.00 (0.00) 6.25 (0.43) 0.00 (0.00) 6.11 (0.39)
γ18 1.00 0.00 (0.00) 6.31 (0.47) 0.00 (0.00) 6.19 (0.35)
γ19 1.00 0.00 (0.00) 6.82 (0.52) 0.00 (0.00) 6.78 (0.36)

Mean RMSE 3.40 (3.48) 8.22 (10.03) 2.21 (2.06) 8.04 (9.89)
Total mass 0.54 (0.72) 0.73 (0.85)
Unique models 5151 (5148) 9993 (9988)
Total models 13250 (9998) 27200 (19849)

similar number of unique models are presented in Table B.3, along with the true distribution and a comparison to previous 
results. In Fig. B.12, we also demonstrate the convergence of the RM and MC estimates over the course of 20 000 iterations.
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Fig. B.12. RMSE compared to the true distribution for MJMCMC run with the simulated logistic data in Example B2. MJMCMC was run 20 times and here 
the first 20 000 iterations are used to demonstrate the convergence. The black solid and dotted lines show the mean RMSE for the 20 runs, with the shaded 
areas showing 90% confidence intervals, for RM and MC estimates respectively.

By examining the results we see that the RM estimates are very similar to those of [25]. Just as in the previous example, 
the MC estimates are slightly more accurate in our new implementation. Also here it should be noted that while we 
estimated roughly the same number of unique models, we visited more models in total. Yet, we captured a bit less of the 
posterior mass than in the original implementation of MJMCMC.

Appendix C. Additional results for Example 1

Fig. C.13. Boxplots of the errors of estimated deviances for the four best optimisation algorithms and tuning parameters from Table 1 and Fig. 2.
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Appendix D. Additional results for Example 2

Fig. D.14. The absolute difference for marginal posterior probabilities for full enumeration of 32 768 Gaussian models using 10 000 observations from the 
dataset in Example 2. 20 runs were performed and the black line shows the mean absolute difference, with grey 90% confidence intervals. The dashed and 
dotted lines show the absolute difference obtained by using the best likelihood estimate for each model that occurred during 5, 10 and 20 random runs.
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Fig. D.15. The absolute difference for marginal posterior probabilities for full enumeration of 32 768 Gaussian models using 100 000 observations from the 
dataset in Example 2. 20 runs were performed and the black line shows the mean absolute difference, with grey 90% confidence intervals. The dashed and 
dotted lines show the absolute difference obtained by using the best likelihood estimate for each model that occurred during 5, 10 and 20 random runs.
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Fig. D.16. The absolute difference for marginal posterior probabilities for full enumeration of 32 768 logistic models using 100 000 observations from the 
dataset in Example 2. 20 runs were performed and the black line shows the mean absolute difference, with grey 90% confidence intervals. The dashed and 
dotted lines show the absolute difference obtained by using the best likelihood estimate for each model that occurred during 5, 10 and 20 random runs.
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Appendix E. Additional results for Example 3

Fig. E.17. Root mean squared error compared to the true distribution for MJMCMC using both regular IRLS and S-IRLS-SGD with varying subsample sizes. 
MJMCMC was run 20 times and for 33 000 iterations for every variant of the algorithm. The black solid and dotted lines show the mean RMSE for the 
20 runs, with the shaded areas showing 90% confidence intervals, for RM and MC estimates respectively. The dashed line shows the RMSE for the full 
enumeration using the same algorithm settings.
59



J. Lachmann, G. Storvik, F. Frommlet et al. International Journal of Approximate Reasoning 151 (2022) 33–63
Fig. E.18. Root mean squared error compared to the true distribution for MJMCMC using both regular IRLS and S-IRLS-SGD with varying subsample sizes. 
MJMCMC was run 20 times and for 33 000 iterations for every variant of the algorithm. The black solid and dotted lines show the mean RMSE for the 
20 runs, with the shaded areas showing 90% confidence intervals, for RM and MC estimates respectively. The dashed line shows the RMSE for the full 
enumeration using the same algorithm settings.
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Appendix F. Additional results for Example 4

Fig. F.19. Marginal inclusion probabilities for the individual covariates in Example 4. The true probabilities are shown as dashed lines, and the MCMC 
estimates from MJMCMC using both regular IRLS, S-IRLS-SGD and SQN with a subsample size of 1% per iteration. MJMCMC was run 20 times and for 
15 000 iterations for every algorithm.
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Fig. F.20. Marginal inclusion probabilities for the individual covariates in Example 2. The true probabilities are shown as dashed lines, and the renormalised 
estimates from MJMCMC using both regular IRLS, S-IRLS-SGD and SQN with a subsample size of 1% per iteration. MJMCMC was run 20 times and for 15 000 
iterations for every algorithm.
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