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A B S T R A C T   

We study the charging dynamics of a long electrolyte-filled slit pore in response to a suddenly applied potential. In particular, we analytically solve the Pois
son–Nernst–Planck (PNP) equations for a pore for which λD≪H≪L, with λD the Debye length and H and L the pore’s width and length. For small applied potentials, 
we find the time-dependent potential drop between the pore’s surface and its center to be in complete agreement with a prediction of the celebrated transmission line 
model. For moderate to high applied potentials, prior numerical work showed that charging slows down at late times; Our analytical model reproduces and explains 
such biexponential charge buildup.   

1. Introduction 

The behavior of electrolytes in narrow conducting pores and chan
nels is important in various fields of biology, chemistry, as well as in 
technological applications. Supercapacitors, for example, store energy 
through electric double layer (EDL) formation in the nanometer-wide 
pores of their porous carbon electrodes. Such devices are often charac
terized by measuring the electric current that arises in response to a 
time-dependent applied potential: be it a step, oscillating (in impedance 
spectroscopy [1,2]), or ramps up and down (in cyclic voltammetry [3]). 
Either way, these methods probe the overall current-voltage response of 
a device; disentangling the microscopic processes that underlie such 
macroscopic response is nontrivial. 

Theoretical models for porous-electrode charging often ignore the 
complex morphology of these electrodes. Many molecular simulations, 
for instance, concern idealized nanometer-sized pore-reservoir system, 
simulated over nanoseconds [4–12]. As such simulations cannot model 
the ion transport over millimeters in the quasi-neutral regions of porous 
electrodes, they vastly underestimate the charging times of real devices 
[13]. Other articles numerically solve the Poisson–Nernst–Plank (PNP) 
equations [14–18] and dynamical density functional theory (DDFT) [19, 
20] to study the charging of cylindrical and slit pores. As larger length 
scales could be studied than in molecular dynamics (MD), the predicted 
charging times are larger, accordingly. Yet, a common picture arises 
from these different numerical methods [4,5,9,10,13,14,19]: Immedi
ately after applying a potential, an electrolyte-filled pore acquires its 
surface charge diffusively, ∝

̅̅
t

√
, until ionic charge variations penetrate 

the entire setup and charging goes exponentially with an RC timescale. 
At late times, and especially for large applied potentials, charging slows 
down and a second exponential regime sets in. Before these numerical 
observations were made, biexponential response had been predicted by 
Biesheuvel and Bazant’s porous electrode model [21]. Experimental 
evidence for biexponential charging of porous electrodes was presented 
in Fig. S10 of Ref. [13], which reanalyzed data from Ref. [22]. Biex
ponential charging is important for capacitive deionization technolo
gies, as it is the second, larger timescale that governs salt adsorption by 
porous electrodes. As of yet, however, there is no analytical expression 
based on a comprehensive first-principles derivation that captures 
biexponential charge build-up. 

Decades before porous electrode charging was studied by numerical 
PNP and molecular simulations, Daniel-Bekh [23], Ksenzhek and Sten
der [24], and de Levie [25–27] developed the transmission line (TL) 
model. The TL model is based on an electronic circuit that distributes the 
resistance and capacitance of an electrolyte-filled pore over many circuit 
elements. For infinitesimally small circuit elements, the circuit yields a 
1d diffusion equation, the TL equation, for the potential drop between 
the pore’s surface and its center [24,25,28]. The response of the TL 
equation to various potentials and currents was discussed for 
semi-infinite pores by Ksenzhek and Stender [24] and de Levie [25] and 
for finite-length pores in contact with a bulk electrolyte by Posey and 
Morozumi [29]. The TL impedance found in this way [27] has been 
widely used to fit experimental data [1,2]. Likewise, the TL model’s 
transient response fitted MD data [11] and accurately reproduced data 
from numerical solutions of the PNP equations [17,18]. Reinforcing the 
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TL model’s basis, Henrique, Zuk, and Gupta recently analytically 
derived the TL equation from the PNP equations [18]. As they restricted 
to small applied potentials, however, their model did not capture Bie
sheuvel and Bazant’s late-time slow down. 

In this article, we analytically solve the PNP equations to determine 
the charging dynamics of an electrolyte-filled slit pore (Fig. 1). We 
consider a pore whose length L is greater than its width H, which, in 
turn, is greater than the Debye length λD. Our derivation hinges on i) 
asymptotic expansions of the ionic densities and local electrostatic po
tentials for small H/L, which allow us to reduce the 3d PNP equations for 
the in-pore ion dynamics to a 1d transport equation and ii) an expansion 
of the time-dependent ionic chemical potentials around the final-state 
ionic densities. For small applied potentials, we reproduce Posey and 
Morozumi’s expression for the time-dependent local electrostatic po
tential inside the pore. For moderate applied potentials, our model fully 
explains biexponential surface charge build-up: after initial RC-like 
relaxation, the charging slows down and evolves with the larger diffu
sion timescale L2/D, with D the ionic diffusion constant. Our 
analytically-determined charging times agree with the numerical data of 
Mirzadeh et al. [17]. 

2. Theory 

2.1. Setup 

We consider the charging of a long slit pore with blocking, con
ducting walls filled with a 1:1 electrolyte. The pore’s length L is much 
larger than its width H, so that L≫H. Moreover, the width is much larger 
than the size of the ions and solvent molecules and we ignore their finite 
sizes, accordingly. We use a Cartesian coordinate system (x, y, z) with x 
in the length direction and z in the width direction of the pore, see Fig. 1. 
Moreover, the pore is closed at x = L and in contact with a bulk elec
trolyte reservoir at salt concentration cb at x = 0. The pore is transla
tionally invariant in the y direction; hence, the dimensionless potential 
ϕ(t, x, z) and the ionic number densities ρ±(t, x, z) do not depend on y. 
From ϕ(t, x, z), one finds the local electrostatic potential through 
multiplication by the thermal voltage kBT/e, with kBT the thermal en
ergy and e the unit charge. Likewise, ρ±(t, x, z) are the local ionic den
sities scaled to the bulk ion concentration cb. 

We model the evolution of ρ±(t, x, z) and ϕ(t, x, z) through the PNP 
equations, 

∂tρ± = D∇⋅(ρ±∇μ±), (1a)  

μ± = log(ρ±) ± ϕ, (1b)  

∇2ϕ = −
ρ+ − ρ−

2λ2
D

, (1c)  

where ∇ = (∂x, ∂z) is the 2d gradient, where D is the diffusion coeffi

cient, assumed spatially constant and the same for both ion species, 
where λD = [2cbe2/(εε0kBT)]− 1/2 is the Debye length, with ε and ε0 the 
relative and vacuum permittivity, respectively, and where μ± are the 
dimensionless ionic chemical potentials, which are the ionic chemical 
potentials divided by kBT. 

Initially (t < 0), no potential is applied to the pore and the electrolyte 
is homogeneous. Charging starts at t = 0 when the dimensionless surface 
potential suddenly steps to some nonzero Φ (not necessarily positive). 
Eq. (1) is thus subject to the following initial and boundary conditions: 

ρ±(0, x, z)= 1, (2a)  

ρ±(t, 0, z) = ρf
±(z), (2b)  

ϕ(t, x, 0)= Φ. (2c)  

ϕ(t, x,H)= Φ, (2d)  

∂zμ±(t, x, 0)= 0, (2e)  

∂zμ±(t, x,H)= 0, (2f)  

∂xμ±(t,L, z)= 0, (2g)  

where Eqs. (2e)–(2g) follow from the pore walls being blocking. Notice 
that our setup is symmetric around z = H/2. Hence, from hereon we 
model only the region 0 < z < H/2 and use ∂zϕ(t, x,H /2) = 0 instead of 
Eq. (2d). Notice, also, that we study ρ±(t, x, z) and ϕ(t, x, z) only within 
the pore, 0 < x < L (and 0 < z < H/2). In real systems, the potential Φ is 
applied with respect to some other electrode. Especially just after 
applying the potential, pore charging dynamics can depend on the dis
tance and space between these two electrodes [28,30]. In our model, 
however, the reservoir affects the pore only through the boundary 
condition Eq. (2b) at the orifice (x = 0). A key assumption of our model, 
we postulate that the ionic number densities at x = 0 relax to their final 
states ρf

±(z) much faster than the rest of the pore does—“instantaneous”, 
from the perspective of the rest of the pore.1 As we use the PNP equa
tions, and as we will focus on thin EDLs (H/λD≫1), these final states are 
the Gouy–Chapman density profiles 

ρf
±(z) =

(
1 + tanh(Φ/2)exp( − z/λD)

1 − tanh(Φ/2)exp( − z/λD)

)∓2

. (3)  

The combination of Eqs. (2b) and (3) should be reasonable provided that 
two conditions are met. First, the pore should be slender (L≫H), so that 
slow relaxation in the long in-pore direction allows the system to attain 
quasi-equilibrium in the short z-direction at each time [see Section 2.2]. 
Second, our analysis can only apply to pores whose resistance R is much 
larger than that of the connected reservoir Rr. For such systems, the 
electric field drops to zero much faster in the reservoir than in the pore 
so that the reservoir is in quasi-equilibrium with the pore as it charges. 
Reassuringly, our analysis ultimately reproduces TL results (for the case 
R≫Rr) for all times, implying that the postulated instantaneous densities 
at x = 0 are compatible with the TL model. 

2.2. H/L≪1 charging dynamics 

Instead of fully solving the nonlinear 2d PNP Eq. (1), we seek 
asymptotic approximations to these equations for small H/L, see 
Appendix A and Refs. [19,20,31]. In short, we first rescale the variables 
in Eq.  (1) with length scales of their characteristic variations. The scaled 
PNP Eq. (A.1) contains O (1) and O (H2/L2) terms only. Accordingly, we 

Fig. 1. A slit pore subject to an applied potential Φ, closed at the right edge at x 
= L and in contact at x = 0 with a bulk filled with a symmetric electrolyte of 
constant salt concentration. 

1 This postulate turns out to agree excellently with numerical pore-charging 
simulations, but only if the resistance of the pore is much larger than that of 
the reservoir [30]. 
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expand the ionic number densities and dimensionless potential for H /
L≪1 and only retain terms of O (1) and O (H2/L2), 

ρ±(t, x, z) = ρ0
±(t, x, z) +

H2

L2 ρ1
±(t, x, z) + O

(
H4

L4

)

, (4a)  

ϕ(t, x, z) = ϕ0(t, x, z) +
H2

L2 ϕ1(t, x, z) + O

(
H4

L4

)

. (4b) 

Upon inserting Eq.  (4) into Eq.  (1), we find that the O (1) problem 
Eq.  (A.3) contains only z-derivatives. In particular, the dimensionless 
potential ϕ0(t, x, z) is governed by 

∂2
z ϕ0 = −

ρ0
+ − ρ0

−

2λ2
D

, (5a)  

ϕ0(t, x, 0)= Φ, (5b)  

∂zϕ0(t, x,H / 2)= 0, (5c) 

Moreover, at O (1) we find that the chemical potential is constant on 
z-slices of the pore [μ0

±(t,x, z) = μ0
±(t,x)] throughout the charging pro

cess. The ionic number densities can thus be expressed as [cf. Eq.  (1b)] 

ρ0
±(t, x, z) = exp

[
μ0
±(t, x) ∓ ϕ0(t, x, z)

]
, (6)  

which, inserted into Eq.  (5a), gives 

∂2
z ϕ0 =

exp
(
μ0
− + ϕ0) − exp

(
μ0
+ − ϕ0)

2λ2
D

. (7) 

As the O (1) problem does not capture the dynamics of our system, 
we turn to the next order, O (H2/L2), where we find the following 
transport equation [cf. Eq.  (A.5)]: 

∂tρ0
± − D∂x

(
ρ0
±∂xμ0

±

)
= 0, (8)  

where ρ0
±(t, x) are cross-sectional averages of the ionic number densities, 

defined for a general observable f(t, x, z) as 

f (t, x) =
2
H

∫ H/2

0
dzf (t, x, z). (9)  

Notice that, with a slight abuse of notation, we wrote ρ0(t, x) instead of 
ρ0(t,x), to keep our expressions tractable. 

The initial and boundary conditions for Eq.  (8) follow from cross- 
sectional averages of Eq.  (2), 

ρ0
±(0, x)= 1 , (10a)  

ρ0
±(t, 0) = ρf

± , (10b)  

∂xμ±(t,L)= 0 , (10c)  

where the final-state cross-sectional average densities ρf
± follow from 

Eqs.  (3) and (9) as 

ρf
± = 1 + 4

[
exp
(
∓

Φ
2

)
− 1
] λD

H
. (11) 

The key advantages of the H/L-expansion are that the transport Eq. 
(8), which appears at O (H2/L2), is 1d and only contains the first terms of 
the asymptotic density and potential expansions [Eq.  (4)]. Hence, we do 
not need to find ρ1

±(t, x, z) and ϕ1
±(t, x, z) to characterize the pore’s 

dominant charging dynamics. 
This article focuses on analytically solving Eq.  (8) and (10). But, for 

comparison, we also solved these equations numerically, by a procedure 
outlined below and elaborated upon in Appendix B. In our numerical 
approach, we close Eq.  (8) by expressing the chemical potential 
μ0(t, x) ≡ μ0[ρ0

+(t, x), ρ0
− (t, x)] as functionals of the cross-sectional 

averages of the ionic number densities ρ0
±(t,x). To do so, we insert Eq. 

(6) into Eq.  (9) and find 

ρ0
±(t, x) = exp

(
μ0
± ∓ ϕ0) = exp

(
μ0
±

)
exp
(
∓ ϕ0), (12)  

where, for the second equality, we used that μ0
±(t, x) is z independent. 

With Eq.  (12) we rewrite Eq.  (7) to 

∂2
z ϕ0 =

1
2λ2

D

(
ρ0
− exp

(
ϕ0)

exp
(
ϕ0)

−
ρ0
+exp

(
− ϕ0)

exp
(
− ϕ0)

)

. (13) 

Clearly, a solution ϕ0(z, ρ0
+, ρ0

− ) to Eq.  (13) is a function of z and of 
the averaged densities ρ0

±(t, x). We can thus express the chemical po
tentials with Eq.  (12) as 

μ0
±

(
ρ0
+, ρ0

−

)
= logρ0

± − logexp
(
∓ ϕ0) , (14)  

which depends on the averaged densities ρ0
±(t, x) but not on the z-co

ordinate. Eq.  (14) enables us to reduce Eq.  (8) to a closed equation for 
ρ0
±(t,x). Details on our numerical implementation are in Appendix B. 

2.3. Late-time charging dynamics 

We seek an approximate solution to the coupled nonlinear PDE (8) 
for times at which the deviations δρ±(t, x) ≡ ρ0

±(t, x) − ρf
± of the den

sities from their final states are small. Specifically, we consider 
Maclaurin series of the density-dependent chemical potentials μ0

±(δρ+,

δρ− ). Omitting terms beyond linear order in δρ±, we find 

μ0
± = a±δρ+ + b±δρ− + O

(
δρ2

±

)
(15a)  

where

a± =
∂μ0

±

∂ρ0
+

⃒
⃒
⃒
⃒

ρf
+

, b± =
∂μ0

±

∂ρ0
−

⃒
⃒
⃒
⃒

ρf
−

.
(15b) 

Here, we used μ0
±(ρf

+,ρf
− ) = 0, which, for our case of thin EDLs, can be 

seen from Eq.  (6): at the center of the pore, the potential vanishes, ϕ0(t,
x,H /2) = 0, and final-state density amounts to ρf

±(z) = 1. More general, 
μ0
±(ρ

f
+, ρ

f
− ) = 0 follows from the pore being in osmotic contact with a 

bulk reservoir where ϕ = 0 and ρ± = 1 [cf. Eq.  (1b)]. 
Inserting the linearization Eq.  (15) into Eq.  (8) and (10), we find 

∂tδρ(t, x) = DA∂2
xδρ(t, x) + O

(
δρ2

±

)
, (16a)  

δρ(0, x) =
(
1 − ρf

+, 1 − ρf
−

)T , (16b)  

δρ(t, 0)= 0, (16c)  

∂xδρ(t, L)= 0, (16d)  

where  

δρ(t, x) = (δρ+, δρ− )
T and where

A =

⎛

⎝
ρf
+a+ρf

+b+

ρf
− a− ρf

− b−

⎞

⎠.
(16e) 

As ρf
± in Eq.  (11) does not depend on x, neither does the initial 

condition Eq.  (16b); hence, δρ(0,x) = δρ(0). 
According to the Hartman-Grobman theorem, the behavior of a 

nonlinear dynamical system of ODEs near a hyperbolic equilibrium 
point can be described by linearized equations (see Theorem 3.3.1 in 
Ref. [32]). By Eq.  (16), we have linearised a nonlinear PDE [Eq.  (8)], to 
which that theorem does not apply, but might be extended, see Ref. [33]. 
Further, our linearization is similar to the linear stability analysis of 
1d-DDFT discussed in Section 7.2. of Ref. [34] and similar to the 
chemical-potential expansion of Tomlin and coworkers around a 
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nonhomogenous equilibrium state (Eq. 3.1 in Ref. [20]). We have not 
seen studies of electrolyte dynamics that utilized chemical potential 
expansions around the final-state densities, though. 

As μ0
± depends only on the cross-sectionally averaged densities, 

evaluating the derivatives in Eq.  (15b) at the ρf
± we find that a± and b±

are constants determined by the electrolyte properties in the pore at the 
final state. Hence, A is constant. We assume that matrix A has two 
distinct real eigenvalues, λ1 and λ2, and a complete system of eigen
vectors, v1 and v2, such that Avi = λivi. One can thus diagonalize A =
PΛP− 1, where P = (v1, v2) and Λ = diag(λ1, λ2), which decouples Eq. 
(16) to 

∂tgi(t, x) = λiD∂2
xgi(t, x), (17)  

where gi are the components of the vector g = P− 1δρ. Notice that, to 
write Eq.  (17), we have used that A does not depend on time. The 
following boundary and initial conditions apply: 

gi(0) =
(
P− 1δρ(0)

)

i, (18a)  

gi(t, 0)= 0, (18b)  

∂xgi(t, L)= 0. (18c) 

Notice that the initial condition (18a) does not depend on x, as 
neither P− 1 nor δρ(0) does. Eqs. (17) and (18) represent a standard heat 
conduction problem that can be solved with separation of variables 
[35], Laplace transformations, or Green’s functions. We found 

gi(t, x) =
∑∞

n=0

2sin(βnx/L)
βn

exp
(
− β2

nλiDt
/

L2)gi(0) , (19)  

where βn = π(1 /2 + n). In vector form, Eq.  (19) reads 

g(t, x) =
∑∞

n=0

2sin(βnx/L)
βn

× diag
[

exp
(

− β2
nλ1

Dt
L2

)

, exp
(

− β2
nλ2

Dt
L2

)]

g(0) .
(20)  

We calculate the density variation δρ = Pg and, with the matrix expo
nent identity, 

exp(A) = P diag(exp(λ1), exp(λ2))P− 1, (21)  

we find the following solution to Eq.  (16): 

δρ(t, x) =
∑∞

n=0

2sin(βnx/L)
βn

exp
(

− β2
nA

Dt
L2

)

δρ(0). (22) 

A key quantity capturing the charging state of a pore is its length- 
averaged charge density, Q(t) =

∫ L
0 dx(ρ0

+ − ρ0
− )/L. For our setup with 

like-charged pore walls, Q(t) is opposite and equal to the wall-averaged 
electric surface charge density. Instead of on Q(t), we will focus on the 
deviation δQ(t) = Qf − Q(t) from its final value Qf = ρf

+ − ρf
− . In terms 

of δρ and the ionic valency vector z = (1, − 1)T we find 

δQ(t) = −
1
L

∫ L

0
dxzT δρ(t, x). (23)  

Inserting Eq.  (22) into Eq.  (23) then yields 

δQ(t) = −
∑∞

n=0

2
β2

n

∑2

i=1
zT Aiδρ(0)exp

(

− β2
nλi

Dt
L2

)

, (24)  

where we used Sylvester’s formula, 

exp
(

− β2
nA

Dt
L2

)

=
∑2

i=1
Aiexp

(

− β2
nλi

Dt
L2

)

, (25)  

and the Frobenius covariants Ai, 

A1 =
A − λ2I
λ1 − λ2

, A2 =
A − λ1I
λ2 − λ1

, (26)  

with I the identity matrix. 
Except at early times, δQ(t) is dominated by its n = 0 terms, which 

relax with timescales ∝L2/(Dλ1) and ∝L2/(Dλ2). Hence, both timescales 
go as L2/D, which corresponds to electrolyte diffusion along the length 
of the pore. But these timescales can still differ much through the factors 
λ1 and λ2, which depend on the pore and electrolyte properties through 
the coefficients a± and b± [Eq.  (15b)]. 

2.4. Analytical approximations to δQ(t) for thin EDLs and moderate 
potentials 

We will seek analytical expressions for δQ(t) [Eq.  (24)] by consid
ering increasingly-restrictive constraints on the values of Φ and λD/H. 

2.4.1. Thin double layers: exp( − H/λD)≪1 
We seek a solution to Eq.  (7) and start by splitting ϕ0(t, x, z) into 

ϕ0(t, x, z) =
μ0
+(t, x) − μ0

− (t, x)
2

+ ϕGC(t, x, z) , (27)  

where the superscript tentatively refers to Gouy and Chapman. Inserting 
this expression into Eq.  (7), we find that ϕGC(t, x, z) is governed by 

∂2
z ϕGC = λ− 2

m sinh
(
ϕGC), (28a)  

ϕGC(t, x, 0)= Φm, (28b)  

∂zϕGC(t, x,H / 2)= 0, (28c)  

where Φm = Φ − (μ0
+ − μ0

− )/2 is a modified dimensionless surface po
tential and λm = λDexp[− (μ0

+ +μ0
− ) /4] a modified Debye length, which 

both depend on t and x through μ0
±. For general H/λm, an equation 

equivalent to Eq.  (28) was solved by Corkill and Rosenhead [36], with a 
solution [Eq. (3.7) therein] in terms of elliptical functions. Meanwhile, 
for pores much wider than the Debye length, the Poisson–Boltzmann Eq. 
(28) has the famous Gouy–Chapman solution 

ϕGC(t, x, z) = 2log
1 + tanh(Φm/4)exp( − z/λm)

1 − tanh(Φm/4)exp( − z/λm)
+ … . (29)  

Here, dots represent higher order terms in an H/λD≪1 expansion of the 
elliptic functions of Corkill and Rosenhead [36]. They showed that such 
terms are negligible for H/λD > 16; the smallest value of that fraction 
that we consider here is H/λD = 20. Inserting Eq.  (29) into Eq.  (27) then 
yields the solution of Eq.  (7). As ϕGC(t,x,H /2) = 0, we see from Eq.  (27) 
that non-equal chemical potentials μ0

+ ∕= μ0
− result in a nonzero potential 

at the middle of the pore. 
Next, we insert Eqs.  (27), (29), and (6) into Eq.  (9) to determine the 

cross-sectional average densities, 

ρ0
± = exp

(μ0
+ + μ0

−

2

){

1 +
4λm

H

[
exp
(
∓

Φm

2

)
− 1
]}

,

+O (exp( − H/λm)) ,

(30)  

where the neglected higher order terms stem from the leading order 
term of Eq.  (29). As λm scales as λD at the linear expansion near the final 
state, λm = λD[1 + O (δρ±)], we find that neglecting these terms in Eq. 
(30) means that our theory holds for moderately thin ELDs [O(exp( −
H/λD))]. (Notice that the final-state cross-sectional average densities ρf

±

of Eq.  (11) also follow from setting μ± = 0, λm = λD and Φm = Φ in Eq. 
(30).) 

Writing ρ0
± = ρ0

±(μ0
+, μ0

− ) and differentiating both sides with respect 
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to ρ0
±, we obtain four independent equations for a± and b±, 

1 =
∂ρ0

+

∂μ0
+

a+ +
∂ρ0

+

∂μ0
−

a− , (31a)  

0 =
∂ρ0

+

∂μ0
+

b+ +
∂ρ0

+

∂μ0
−

b− , (31b)  

1 =
∂ρ−

∂μ+

b+ +
∂ρ−

∂μ−

b− , (31c)  

0 =
∂ρ−

∂μ+

a+ +
∂ρ−

∂μ−

a− . (31d) 

Inserting Eq.  (30), we find 

a− = −
(H − 2λD)H

4λD[2λD + (H − 2λD)cosh(Φ/2)]
, (32a)  

a+ = − a−

(

1+
4λDexp(Φ/2)

H − 2λD

)

, (32b)  

b− = − a−

(

1+
4λDexp( − Φ/2)

H − 2λD

)

, (32c)  

b+= a− . (32d) 

With the coefficient a± and b± [Eq.  (31)] and final densities ρf
± [Eq. 

(11)] at hand, we can now express A [Eq.  (16e)] and analytically 
determine its eigenvalues and Frobenius covariants Ai [Eq.  (26)]. In 
turn, this yields the charging dynamics δQ(t) [Eq.  (24)]. The resulting 
expressions, however, are very long (not shown). 

2.4.2. Thin double layers and moderate potentials: λD/H≪1, 
exp(±Φ /2)λ2

D/H2≪1 
We further restrict the EDL thickness and also constrain the applied 

potential by omitting O (λD/H) and O (exp(±Φ /2)λ2
D/H2) terms. We do 

keep O (exp(±Φ /2)λD/H) terms, which can become notable for |Φ| > 1. 
Under these conditions, Eq.  (32) reduces to 

a− = −
1

4cosh(Φ/2)
H
λD

[

1+O

(
λD

H

)]

, (33a)  

a+ = − a−

{

1+ η
[

1+O

(
λ2

D

H2

)]}

, (33b)  

b− = − a−

{

1+ exp( − Φ)η
[

1+O

(
λ2

D

H2

)]}

, (33c)  

b+= a− (33d)  

where the parameter η is given by 

η = 4exp
(Φ

2

) λD

H
. (34)  

Parameters similar to η appear in models for electrophoresis (as the 
“Dukhin” number) [37] and EDL formation near flat plates [38,39]. 

Using Eq.  (11) and omitting O (λD/H) and O (exp(±Φ /2)λ2
D /H2)

terms, we find ρf
+a+ = ρf

− b− , with a+ and b− given in Eq.  (33). Inserting 
this into Eq.  (16e) yields 

A =
1

4cosh(Φ/2)
H
λD

(
ρf
+(1 + η) − ρf

+

− ρf
− ρf

+(1 + η)

)

, (35)  

whose eigenvalues and eigenvectors read 

λ1 =
1

4cosh(Φ/2)
H
λD

[
ρf
+(1+ η)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ρexc

√ ]
, (36a)  

λ2 =
1

4cosh(Φ/2)
H
λD

[
ρf
+(1+ η) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ρexc

√ ]
, (36b)  

v1 =
(
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρf
+

/
ρf
−

√

, 1
)T

, (36c)  

v2 =
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρf
+

/
ρf
−

√

, 1
)T

, (36d)  

where ρexc = ρf
+ + ρf

− − 2 is the excess salt density, which arises in the 
eigenvalues Eqs.  (36a) and (36b) as ρf

+ρf
− = 1+ ρexc +

O (exp(±Φ /2)λ2
D/H2). 

Calculating the Frobenius covariants [Eq.  (26)] and inserting them 
into Eq.  (24), we obtain 

δQ(t)
Qf =

∑∞

n=0

1
β2

n

{[
1 + (1 + ρexc)

− 1/2
]
exp
(

− β2
nλ1

Dt
L2

)

+
[
1 − (1 + ρexc)

− 1/2
]
exp
(

− β2
nλ2

Dt
L2

)}

+O

(
λD

H

)

+ O
(
e±Φλ2

D

/
H2),

(37a)  

where 

ρexc = 16
λD

H
sinh2(Φ / 4) (37b) 

Notice that the relative importance of the two pre-exponential fac
tors of Eq.  (37a) depends only on ρexc, which, in turn, depends on the 
applied potential and EDL overlap. 

2.4.3. Towards the TL model: η≪1 
Next, we consider the case η≪1. Clearly, for η to be a small parameter 

puts restrictions on the applied potential Φ and the EDL overlap λD/H. 
Yet, η≪1 and Φ ∼ 1 are simultaneously possible. Thus, for sufficiently 
thin EDLs, the expressions that we derive below apply to PNP in the 
nonlinear charging regime. 

We insert Eqs.  (11) and (37b) for ρf
± and ρexc into Eq.  (36a) to obtain 

small-η expansions of the eigenvalues, 

λ1 =
2
η

exp(Φ/2)
cosh(Φ/2)

+ O (1), (38a)  

λ2= 1 + O (η) (38b) 

Likewise, we find that Eq.  (37) reduces for small η to 

δQ
Qf =

∑∞

n=0

2
β2

n

[(

1 −
sinh2(Φ/4)
exp(Φ/2)

η
)

exp
(

− β2
nλ1

Dt
L2

)

+η sinh2(Φ/4)
exp(Φ/2)

exp
(

− β2
nλ2

Dt
L2

)]

+ O
(
η2)

(39)  

At late times, only the n = 0 terms contribute and δQ(t) further sim
plifies to 

δQ
Qf ≃

8
π2

[

exp
(

−
t

τ1

)

+ η sinh2(Φ/4)
exp(Φ/2)

exp
(

−
t

τ2

)]

(40a)  

τ1 =
4
π2

L2

D
2λD

H
cosh

(Φ
2

)
, (40b)  

τ2 =
4
π2

L2

D
≫τ1 , (40c)  

where we omitted a O (η) term in the term relaxing with τ1 as it is much 
smaller than the O (1) term that we kept. We kept the O (η) term that 
relaxes with the τ2 timescale, however, as it can dominate the first term 
of Eq.  (40a) for τ1 < t < τ2. In τ2 we recognise the common diffusion 
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timescale; as we considered λD≪H, it follows that τ2≫τ1. Next, we un
derstand τ1 as follows. Multiplying the differential Gouy–Chapman ca
pacity per unit length in the y-direction, CGC

D = 2Lεε0cosh(Φ /2) /λD, by 
the electrolyte resistance times a unit length in the y-direction, R = λ2

DL 
/(Hεε0D), yields the timescale RC = 2λDL2/(HD)cosh(Φ /2). To the best 
of our knowledge, this timescale has not been reported for pores. Yet, it 
is completely analogous to the nonlinear RC time of flat-electrode 
charging [38]. In both cases, the nonlinear RC time comprises a Φ-in
dependent prefactor multiplied by cosh(Φ/2). 

Eq.  (39) and its late-time simplification Eq.  (40) are key results of 
this paper. As we will discuss further in Sections 3 and 4, these analytical 
expressions fully capture the biexponential charge relaxation seen in 
previous numerical works [4,5,9,10]. 

2.4.4. TL model: Φ≪1 
For Φ≪1 our theory recovers known TL model results. First, the 

timescale τ1 reduces to 

τ1 =
4
π2

L2

D
λD

hp
, (41)  

where hp ≃ H/2 is the ratio of the pore’s cross-section area to perimeter 
for long pores H/L≪1. Apart from the prefactor 4/π2, the above time
scale agrees with the timescale τTL = L2λD/(hpD) of Ref. [17]. 

Second, dropping the O (η) terms in Eq.  (39) yields 

δQ(t)
Qf =

∑∞

n=0

2
β2

n
exp
(

−
β2

nt
τTL

)

, (42)  

which is the charge density stated below Eq.  (7) in Ref. [17]. 
Last, we consider the electrostatic potential difference between the 

pore’s surface and center line, Δϕ(t, x) = Φ − ϕ0(t, x, H /2). As the 
Gouy–Chapman potential ϕGC [Eq.  (29)] vanishes at the mid-plane (z =
H/2), with Eq.  (27) we find that Δϕ = Φ − (μ0

+ − μ0
− )/2. 

Using Eqs.  (33) and (15) and a− = − H/(4λD) for Φ≪1, we find 

Δϕ(t, x)
Φ

= 1 −
HzT δρ(t, x)

4λDΦ
, (43)  

We use Eqs.  (22) and (25) to determine zTδρ(t,x). In this calculation, the 
first Frobenius covariant contributes with a term zTA1δρ(0) = 4ΦλD /H 
+ O (η2), while the second covariant A2 ∼ O (η2) is discarded. We find 

Δϕ(t, x)
Φ

= 1 −
∑∞

n=0

2sin(βnx/L)
βn

exp
(

−
β2

nt
τTL

)

, (44)  

which coincides with Eq.  (19) of Ref. [29]. Underlying our derivation of 
Eq.  (44) is the assumption that the ion densities at x = 0 relaxed 
instantaneously [Eq.  (2b)] to the Gouy–Chapman density [Eq.  (3)]. 
Notice that Δϕ(t = 0, x = 0) = Φ for these Gouy–Chapman densities, 
which was precisely the boundary condition used by Ref. [29] to derive 
their Eq.  (19). 

To our knowledge, we have thus given the first comprehensive 
derivation of TL-model results starting from first principles. 

3. Results 

We first discuss the dimensionless potential ϕ0(t, x, z) [Eq.  (27)] 
inside our slit pore. To plot that equation requires inserting ϕGC [Eq. 
(29)] and μ0

±(ρ0
+, ρ0

− )—the latter quantity we determined by a semi- 
analytical method whereby we evaluated Eq.  (15) with numerically- 
determined coefficients a± and b±, see Appendix B. Fig. 2(a) shows 
heat maps of ϕ0(t, x, z) from Eq.  (27) as it evolves inside the slit pore. 

In these snapshots, we see how a “charging front” penetrates the 
pore. Our semi-analytical model thus contains more information than 
the TL model, which only describes the dynamics of the electrostatic 

potential drop Δϕ(t, x) = Φ − ϕ0(t, x,H /2) between the pore surface 
and its mid-plane, which we turn to next. Fig. 2(b) shows Δϕ(t, x)/Φ as 
determined by the semi-analytical method for x = 0.25L and x = 0.95L, 
H/λD = 40, and several Φ. The same panel also shows the Φ-indepen
dent TL solution Eq.  (44) (black open circles), in whose derivation we 
omitted O (η2) terms of A1 and A2, which would have contributed to 
Δϕ(t, x)/Φ at O (η). The plot shows that Eq.  (44) agrees with the semi- 
analytical results up to Φ = 1, for which η ≈ 0.16 is indeed small. This 
agreement up to Φ = 1 is surprising on the basis the TL equation’s usual 
derivation, which involves a Φ≪1 assumption [17]. 

Next, we discuss the deviation of the average ionic charge density 
from its final state, δQ(t). The theory of the previous section enables us 
to determine δQ(t) at different levels of restrictions to the parameters λD/

H and Φ. Here, we choose the following three methods to determine 
δQ(t): i) numerically, by solving Eqs.  (8) and (10), see Appendix B; ii) 
semi-analytically (in the same way as we determined ϕ0(t, x,H /2)
above), with Eq.  (24) and numerically determined a± and b±, see 
Appendix B; iii) analytically, with Eq.  (37). Accordingly, Fig. 3(a) shows 
numerical (open circles), semi-analytical (lines), and analytical (dashed 
lines) results for δQ(t) for several Φ. Comparing the results of the three 
methods, we see that the numerical and semi-analytical methods yield 
almost indistinguishable δQ(t); predictions from Eq.  (37) differ a bit, but 
still agree with the other methods within a few percent. Clearly, all three 
methods predict the same qualitative behavior: For the small value Φ =

0.1, the charge evolves with a single characteristic time; for Φ ≥ 1, the 
charge relaxes exponentially with two distinct timescales. For all Φ 
considered, the first exponential regime describes almost the whole 
charging process. The second exponential regime gains in importance as 
the applied voltage increases. 

All these observations can be understood with Eq.  (40), which 
predicts that charging goes exponentially with the two timescales of 
Eqs.  (40b) and (40c). The second exponential regime goes as 
∝4sinh2(Φ /4)λD/Hexp( − t /τ2), whose prefactor explains the absence of 
the second regime for the smallest potential in Fig. 3(a) and its 
appearance for larger Φ. In addition, for Φ ≤ 1, the relaxation time τ1 
[Eq. (40b)] depends only weakly on the applied potential, which results 
in the same early-time slope of the curves for Φ = 0.1 and 1. 

Fig. 3 (a) shows that charging goes slower for larger applied poten
tials. This slowdown can be captured by the charging time tch, defined as 
the time at which the pore reaches a certain fraction of its final char
ge—Ref. [17] uses 99% and, to compare with their results, we make the 
same choice here. In Fig. 3(a), tch thus corresponds to the intersection of 
the charging data with a horizontal line at δQ/Qf = 0.01—for Φ = 1 and 
Φ = 4, we indicate these intersections with stars and the corresponding 
tch with arrows. Except for large Φ, the cross-over between the two 
exponential regimes in Fig. 3(a) is narrow. tch thus usually falls either in 
the first or in the second exponential regime. In Fig. 3(a), tch falls in the 
first exponential regime for Φ = 1 and in the second exponential regime 
for Φ = 4. We now see that Φ-induced charging slowdown has two 
different origins. For small Φ, tch falls in the first exponential regime and 
increases with Φ due to the cosh(Φ/2) term in the nonlinear RC time τ1 
[Eq.  (40b)]. For large Φ, tch falls in the second exponential regime and 
increases with Φ because this regime contains a O (η) prefactor that 
grows with Φ [cf. Eq. (40a)]. 

To further demonstrate the merits our model, we compare its pre
dictions for tch(Φ) with corresponding data from direct numerical PNP 
simulations of Ref. [17] of a pore with H/λD = 202 subject to potentials 
up to Φ = 7. In Fig. 3(b), the black open circles represent the simulation 
data of Fig. 5(d) of Ref. [17]. For the mentioned parameters, we cannot 
use our fully analytical expression Eq. (37) to determine tch as its higher 
order term eΦλ2

D/H2 ≈ 2.74 is non-negligible. We thus use our 

2 We deduced H/λD = 20, which was not reported in Ref. [17], from Fig. 4 
therein. 
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semi-analytical method—Eq.  (24), with numerically determined a± and 
b±. Fig. 3(b) shows the charging time tch(Φ) (blue line) for H /λD = 20.3 

All tch data in Fig. 3 is scaled by the charging time for small applied 
potentials t0 = tch(Φ≪1). We estimate t0 with Eq.  (40a), where 0.01 

= (8 /π2)exp[− π2t0 /(4τTL)] yields t0 = τTL(4 /π2)ln(800 /π2) ≈ 1.78τTL.4 

Fig. 3(b) shows that the prediction from our model—which contains no 
fitted free parameters—agrees well with the data of Ref. [17] for all Φ 
considered. This good agreement is in contrast to Biesheuvel and 
Bazant’s model, whose tch were up to an order of magnitude too large. 
Finally, we note that the qualitative behavior of tch(Φ)/t0 for Φ≪1 can 

Fig. 2. (a) Heat map of ϕ0(t, x, z) for Φ = 1 and three 
different times; for this plot, we used Eqs.  (27) and 
(29) and determined μ0

± by a semi-analytical described 
in the text. (b) The potential drop between the pore 
surface and pore center, Δϕ(x,t) = Φ − ϕ0(t,x,H /2), as 
a function of t at x = 0.25L and x = 0.95L, for H/λD =

40 and Φ = 0.1,1.0, 2.0 and 4.0 (orange, green dashed, 
blue, and purple lines). Lines are determined by the 
semi-analytical method; black open circles are the TL 
solution Eq.  (43). (For interpretation of the references 
to color in this figure legend, the reader is referred to 
the web version of this article.)   

3 The PNP equations are probably not accurate for the larger Φ values in 
Fig. 3(b); we consider Φ < 8 to compare to Ref. [17]. 

4 Reference [17] scales tch by τTL. The tch/τTL data in their Fig. 5(d) should 
approach 1.78 for small applied potential, but it approaches 1, instead. 
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be understood as follows. If 99% of the charge is reached within the first 
exponential regime, we can write 0.01 = (8 /π2)exp( − tch /τ1), hence tch 

= (4 /π2)τTLcosh(Φ /2)ln(800 /π2). For Φ≪1, this simplifies to t0 =

(4 /π2)τTLln(800 /π2). Taking the ratio of these expressions gives tch /t0 
= cosh(Φ /2). We see that this approximation describes tch(Φ) /t0 up to 
about Φ = 1. Indeed, in Fig. 3(a) we see that, for Φ = 2, 99% of the 
charge is not reached within the first exponential regime, and the above 
argument does not hold. 

4. Discussion 

4.1. Biexponential decay of two-component systems 

The charging dynamics of our pore is governed by a matrix differ
ential Eq. (16), whose 2 × 2 matrix A has two distinct eigenvalues λ1 and 
λ2. Eq.  (17) shows that these eigenvalues set the relaxation times of the 
components g1 and g2 of g = P− 1δρ. The number of timescales (two) in 
our system is thus a direct consequence of the number of electrolyte 

components (two). For η≪1, P = (v1, v2) takes a simple form, and we 
find 

g =
1
2

(
− 1 1

1 1

)⎛

⎝
ρ0
+(t, x) − 1

ρ0
− (t, x) − 1

⎞

⎠ =
1
2

⎛

⎝
ρ0
+ − ρ0

−

ρ0
+ + ρ0

− − 2

⎞

⎠ . (45)  

where we used that ρf
±→1 for η≪1. The elements of g in Eq.  (45) 

correspond to ionic charge density and salt density perturbations. These 
quantities thus decouple for η≪1 and relax with distinct timescales: g1 
relaxes with λ1 and g2 relaxes with λ2. For finite η, the matrix P becomes 
more complicated and the product P− 1δρ no-longer yields a charge- and 
salt-perturbations vector. Hence, a charge- and salt-perturbations rep
resentation no-longer diagonalizes the matrix A, which means that salt 
and charge relaxation become coupled. 

The above properties resemble those of electrolyte relaxation be
tween two flat oppositely-charged electrodes [38,40]. When that system 
is modeled through the PNP equations, the only differences to our setup 

Fig. 3. (a) Charging of a slit pore with H/λD = 40 after 
applying a potential Φ = 0.1,1.0,2.0 or 4.0 (orange, 
green, blue, purple), calculated from the transport Eqs. 
(8) and (10) numerically (open circles), semi- 
analytically (solid lines) and analytically [Eq.  (37)] 
(dashed lines). The dot-dashed line illustrates the point 
where the system reaches 99% of its charge. The ver
tical arrows indicate, for Φ = 0.1 and Φ = 4.0, the 
times tch at which that barrier is crossed. (b) The scaled 
charging time ratio tch/t0 (blue line) for H/λD = 20, 
calculated semi-analytically using Eq.  (24). The black 
open circles are data from Fig. 5(d) of Ref. [17], ob
tained there through numerical solution of the PNP 
equations. The gray dashed line indicates cosh(Φ/2). 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the web version 
of this article.)   
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are in the geometry and its boundary conditions. For Φ≪1, the coupled 
PNP equations for ρ+ and ρ− again become decoupled in a charge (ρ+ −

ρ− ) and salt (ρ+ + ρ− ) representation. At O (Φ), the salt does not 
respond, and the charge relaxes with the RC time λDL /D, with L the 
electrode separation. The nonlinear charging regime Φ⪆1 was discussed 
by Bazant et al. [38]. Through matched asymptotic expansions, they 
found that the ionic charge density then relaxes biexponentially: the 
initial RC relaxation is followed at late times by diffusive L2 /D charging. 

It would be interesting to study flat-electrode charging through final- 
state expansions as we did in this paper in Eq.  (15). Unfortunately, our 
approach cannot be transferred directly to the flat-electrodes problem. 
In our paper, rather than the PNP equations, we solved the transport Eq. 
(8), which resulted from the PNP equations after a lubrication approx
imation (H≪L). This transport equation only contained the cross- 
sectional averaged densities ρ0

±(t, x) and the chemical potential μ0
±(t,

x), which did not depend on the z-coordinate either. The absence of 
z-dependence in the transport Eq. (8) meant that we could expand the 
μ0
±(t, x) around the homogeneous final state ρf

±. This reduced Eq.  (8) to a 
matrix differential Eq. (16) that was analytically solvable, as its matrix A 
[Eq.  (16e)] was t, x, and z independent. The flat-electrode charging 
problem is different. Here, there is no small parameter with which we 
can reduce the PNP equations to a transport equation in terms of den
sities averaged in the EDL direction. Expanding the chemical potentials 
around the in-homogeneous final-state densities then yields a matrix 
differential equation with a spatially varying matrix. Such an equation, 
however, cannot be readily brought by matrix diagonalization to a 
simple diffusion-type equation like our Eq.  (17). 

4.2. Comparison to Biesheuvel and Bazant [21] 

Biesheuvel and Bazant developed a porous electrode model 
comprising, at each point in the electrode, a bulk solution in contact 
with charged double layers [21]. Specifically, their model accounted for 
the salt and ionic charge transport through a pore, which exchanged salt 
and ionic charge with EDLs modeled through Gouy–Chapman theory. As 
that is an equilibrium theory, the EDLs of their model were in a 
quasi-equilibrium that instantaneously adapted to the salt and charge 
exchange with the quasi-neutral bulk. 

Our model has two salient structural similarities to the model in 
Ref. [21]: First, our O (1) problem Eq.  (A.3a) describes the equilibrium 
charge distribution at a cross-section of the pore. In Ref. [21], this cor
responds to their choice to model the EDLs through Gouy–Chapman 
theory, which is an equilibrium theory. Second, at O (H2 /L2), we found 
a one-dimensional transport equation [Eq.  (8)] for the cross-sectional 
averaged cationic and anionic densities. Likewise, Biesheuvel and 
Bazant use transport equations [Eqs. (9) and (10) there] for the charge 
and salt adsorption [Eqs. (6) and (8) there]. Again, in their model, the 
charge and salt adsorption are modeled within the Gouy–Chapman 
theory, specifically, as integrals of the difference and sum of the den
sities ρf

+ and ρf
− given in Eq.  (3). 

Compared to Ref. [21], two merits our model are that it is based on a 
first-principles derivation and that it reproduces the data of Ref. [17]. 

4.3. Comparison to Henrique et al. [18] and Alizadeh and Mani [31] 

In Ref. [18], Henrique, Zuk, and Gupta studied the charging of a 
narrow cylindrical pore for arbitrary double layer overlap. For thin 
double layers, their Eq. (27) reduces to Posey and Morozumi’s expres
sion Eq. (44). Like ours, their derivation starts from the PNP equations, 
but they make two additional assumptions.  

(i) Reference [18] considered small applied potentials, expanding all 
observables for small Φ and accounting only for the O (Φ) terms. 
This assumption allowed the authors of Ref. [18] to render the 
Poisson equation in radial geometry [Eq. (15) there] solvable. To 

extend their study to larger Φ, still keeping EDL overlap arbitrary, 
one should find the cylindrical-pore counterpart of Corkill and 
Rosenhead’s flat-plates Poisson–Boltzmann solution [36]. Notice, 
however, that the validity of their current small-Φ model is 
probably governed by a parameter like η rather than by Φ: in our 
work, the second regime of biexponential decay contains the 
prefactor η = 4exp(Φ /2)λD/H. As Henrique and coworkers 
discuss cases of λD/H ∼ 1/2 (instead of ≤ 1/20 as we did here), in 
practice, the applied potential should be correspondingly smaller 
to justify ignoring the second exponential regime.  

(ii) Next, Ref. [18] assumed quasi-equilibrium in the radial direction 
of their cylindrical pore, which they justified by citing Ref. [31]. 
In Ref. [31], Alizadeh and Mani scaled their electrokinetic Eqs. 
(14)–(18)E by the relevant length scales L and H, as we did here. 
Taking the limit H/L→0, they found in Eqs. (22)–(28) that their 
ionic densities were in equilibrium across sections of the pore. 

Finally, they integrated the 3d transport equations over the 
pore cross section and found reduced 1d equations. In spite of the 
similarity of these steps to our calculations in Appendix A, there is 
a crucial difference between our methods. Unlike Ref. [31], we 
found asymptotic approximations to the solutions of the PNP 
equations Eq.  (A.1) (Eqs. (14) and (15) in Ref. [31]). As 
explained in Ref. [41], performing a scaling analysis to identify a 
small parameter is one necessary step in this process; plugging in 
assumed asymptotic expansions for that small parameter [cf. Eq. 
(A.2)] into the governing equations is another. Reference [31] 
did not set the second step. Without asymptotic expansions, 
however, one cannot be sure that the solution of the 
cross-sectional problem (Eqs. (22)–(28) in Ref. [31]) has the same 
order in H/L as the variables of the integrated transport (Eqs. (43) 
and (44) in Ref. [31]). We observed that the time-dependent Eq. 
(A.4a) contains both the first and second terms of the asymptotic 
density and potential expansions over H/L. After cross-sectional 
averaging of Eq.  (A.4a), the second terms of these asymptotic 
expansions dropped [cf. Eq.  (A.6)]. Hence, ion transport is gov
erned solely in terms of the first terms of the asymptotic ap
proximations. Comparing Eqs. (43) and (44) of Ref. [31] 
(ignoring their fluid velocity term) to our transport Eq. (8), we see 
that these are actually the same—that is, if one reinterpret their 
densities and chemical potentials as representing the first terms 
of our asymptotic expansions rather than the full solutions. 
Notice that this somewhat trivial result required a nontrivial 
derivation. 

5. Conclusions and outlook 

We have studied the response of an elongated, electrolyte-filled slit 
pore to a moderate applied potential. Our approximate analytical solu
tions to the PNP equations yielded unprecedented insight into the 
biexponential charging of such pores found previously in experiments 
[13,22] and numerical studies [4,5,10,13,19]. Moreover, we provided 
the first comprehensive derivation of well-known TL model results. In 
our model, we postulated that the ionic density at x = 0 were instan
taneously relaxed [Eq.  (2b)] which led to analytical results for the 
time-dependent surface charge in full agreement with prior studies. It 
would be interesting to extend our model to explicitly account for the 
electrolyte reservoir with which the pore is in contact. 

Future work could also study a case of overlapping EDLs [18]. 
Instead of the Gouy–Chapman potential Eq.  (29) one should then either 
use Debye–Hückel theory (for Φ≪1) or the results of Corkill and 
Rosenhead (for Φ⪅2) [36]. Another possible direction is to study non
blocking electrodes, which may shed light on Refs. [42,43]. Last, future 
work could consider larger applied potentials. Electrostatic correlations 
[44] and the finite size of ions [45] will then become important. Luckily, 
substantial parts of Sections 2.2, and 2.3 are actually model-independent 
and might be directly transferred to study more involved electrolyte 
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models. One of us—with Sinkov and Akhatov [19]—derived precisely 
the same transport Eq. (8) in a DDFT study of confined electrolytes. 
Here, we linearized Eq.  (8) by expanding the chemical potentials [Eq. 
(15)] around the final-state ionic densities. This yielded a linearized 
transport Eq. (16), whose solution Eq.  (22) should hold for any system 
sufficiently close to equilibrium and governed by Eq.  (8). (With 
increasing potential, a system will move ever further from its initial 
state; the discarded higher order terms in Eq.  (15) will then become 
more important.) The physical properties of a specific pore and elec
trolyte model enter Eq.  (22) through the Frobenius covariants, which 
depend on the expansion coefficients a± and b± [Eq.  (15b)]. For PNP, 
we could determine a± and b± analytically. For more involved models, 
one might need to determine them numerically. 

In a follow-up study with different authors, one of us has scrutinised 
our postulate [Eq.  (2b)] of instantaneous density profiles at the pore 
mouth through numerical simulations [30]. It was found there that the 
density profiles at the pore mouth relaxed up to six orders of magnitude 
faster—“instantaneous”, as far as the rest of the pore was con
cerned—but only, as anticipated here, if the resistance of the pore was 
much larger than that of the reservoir. In that case, and for small Dukhin 
numbers η, our central result Eq.  (40) excellently captured the 
numerically-determined charge buildup. 
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Appendix A. Derivation of Eq. (8) 

Here, we follow Ref. [19] and derive the transport Eq. (8) for long slit pores (H/L≪1). First, we change to different dimensionless variables: ̂z = z 
/H and x̂ = x/L are the dimensionless z- and x- coordinates; ϕ̂ = ϕ/Φ is the scaled dimensionless potential. To define dimensionless time and density, 
we use the ̂t = tD/L2 and ρ̂± = H2ρ±/2Φλ2

D, respectively. Such variables allow us to explicitly introduce the small parameter H/L into the 2D-PNP Eq. 
(1), as follows 

H2

L2 ∂̂
t
ρ̂± =

H2

L2 ∂̂x (ρ̂±∂̂x μ±) + ∂̂z(ρ̂±∂̂z μ±), (A.1a)  

H2

L2 ∂2
x̂
ϕ̂ + ∂2

ẑ
ϕ̂ = − (ρ̂+ − ρ̂ − ), (A.1b)  

∂̂z μ±(̂t, 0)= 0, (A.1c)  

∂̂z μ±(̂t, 1)= 0, (A.1d)  

ϕ̂(̂t, 0)= 1, (A.1e)  

∂̂z ϕ̂(̂t, 1 / 2)= 0, (A.1f)  

where Eqs.  (A.1c) and (A.1d) express the condition of the zero ionic flux through the pore walls. 
As Eq.  (A.1) contains only even powers (zero and two) of the small parameter H/L, we seek solutions ρ̂± and ϕ̂ to Eq.  (A.1) in terms of series with 

even powers of H/L too, 

ρ̂± = ρ̂0
± +

H2

L2 ρ̂1
± + O

(
H4

L4

)

, (A.2a)  

ϕ̂ = ϕ̂
0
+

H2

L2 ϕ̂
1
+ O

(
H4

L4

)

. (A.2b) 

We insert Eq.  (A.2) into Eq.  (A.1) and collect terms of the same order in H/L. At O (1), we find 

0 = ∂̂z ρ̂0
±∂̂z μ0

±, (A.3a)  

∂2
ẑ
ϕ̂

0
= −

(
ρ̂0
+ − ρ̂0

−

)
, (A.3b)  

∂̂z μ0
±(̂t, 0)= 0, (A.3c)  

∂̂z μ0
±(̂t, 1)= 0, (A.3d)  

ϕ̂
0
(̂t, 0)= 1, (A.3e) 
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∂̂z ϕ̂
0
(̂t, 1 / 2)= 0, (A.3f)  

where μ0
± = μ±(ρ̂

0
±, ϕ̂

0
) is the O (1) chemical potential. Notice that the O (1)-problem does not depend on time. From Eqs. (A.3a), (A.3c) and (A.3d), we 

see that the chemical potential does not depend on ̂z-coordinate μ0
± = μ0

±(̂t , x̂). This condition means that the O (1) density distributions can be found 
from Eq.  (1b), which results in Eq.  (6). 

The remaining Eqs. (A.3b), (A.3e), and (A.3f) give us the O (1)-Poisson Eq. (5), which can be solved analytically and numerically (see Sections 2.3 
and Appendix B, respectively). 

Inserting Eq.  (A.2) into Eq.  (A.1) gives, at O (H2/L2), 

∂̂
t
ρ̂0
± = ∂̂x

(
ρ̂0
±∂̂x μ0

±

)
+ ∂̂z

(
ρ̂1
±∂̂z μ0

± + ρ̂0
±∂̂z μ1

±

)
, (A.4a)  

μ1
± =

δμ±

δρ̂+

ρ̂1
+ +

δμ±

δρ̂ −

ρ̂1
− +

δμ±

δϕ̂
ϕ̂

1
, (A.4b)  

∂̂z μ1
±(̂t, 0)= 0, (A.4c)  

∂̂z μ1
±(̂t, 1)= 0, (A.4d)  

ϕ̂
1
(̂t, 0)= 0, (A.4e)  

∂̂z ϕ̂
1
(̂t, 1 / 2)= 0, (A.4f)  

where the derivatives in Eq.  (A.4b) are calculated at ρ̂± = ρ̂0
± and ϕ̂ = ϕ̂

0
. 

We integrate Eq.  (A.4a) over z from 0 to 1 and find 

∂̂
t
ρ̂

0
± = ∂̂x

(∫ 1

0
dẑ ρ̂0

±∂̂x μ0
±(̂t, x̂)

)

= ∂̂x

(
ρ̂

0
±∂̂x μ0

±

)
, (A.5)  

where, for the first equality, we used 
(

ρ̂1
±∂̂z μ0

± + ρ̂0
±∂̂z μ1

±

)⃒
⃒

1

ẑ=0
= 0 , (A.6)  

which follows from the conditions ∂ x̂μ0
± = ∂x̂ μ1

± = 0 for ẑ = 0 and ẑ = 1, see Eqs. (A.3c), (A.3d), (A.4c), and (A.4d). For the second equality in Eq. 
(A.5), we used that μ0

±(x, t) does not depend on z, which follows from Eqs. (A.3a), (A.3c), and (A.3d), and can thus be taken out of the integral. 
Returning to the variables of the main text, we arrive at Eq.  (8). 

Appendix B. Numerical calculations 

We numerically solve Eq.  (8) through two sub-tasks: (i) the calculation of the chemical potentials data to obtain the functions of two variables 
μ±(ρ+, ρ− ) by interpolation; (ii) the solution of the transport Eq. (8) for given functions μ±(ρ+,ρ− ). 

Sub-task (i) corresponds to finding a self-consistent solution of Eqs.  (13) and (12). These equations calculated for densities from a discrete two- 

dimensional set {ρ(n)+ }
N
n=0 × {ρ(n)

− }
N
n=0, which is the Cartesian product of the one-dimensional lists containing the following elements for Φ > 0: 

ρ(n)
+ = ρf

+ − ϵ+ +
1 − ρf

+ + 2ϵ+
N

n, for n = 0,…,N, (B.1a)  

ρ(n)
− = 1 − ϵ− +

ρf
− − 1 + 2ϵ−

N
n, for n = 0,…,N, (B.1b)  

with N the number of elements/gridpoint in our density discretization, ϵ± = 2|1 − ρ±|/N is a parameter which extends the data-set beyond the range 
(ρf

+, ρf
− ). In our calculations we used N = 10. We use the Python library SciPy to solve Eqs.  (13) and (12) for the densities Eq.  (B.1). Then, we 

interpolate the calculated data using the standard interpolation function of Wolfram Mathematica, which gives us the functions μint
± (ρ+,ρ− ). We use 

these functions to numerically determine the coefficients a± and b±, as follows 

a± =
∂μint

±

∂ρ0
+

⃒
⃒
⃒
⃒

ρf
+

, b± =
∂μint

±

∂ρ0
−

⃒
⃒
⃒
⃒

ρf
−

. (B.2) 

To solve sub-task (ii), we follow Ref. [19]: spatial discretization along x-coordinate is performed on a uniform staggered grid using the finite 
volume method; the resulting system of the ODEs is solved with the built-in method of Wolfram Mathematica. 
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