oyl Branc
APPLIED

Journal of Applied Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cjas20

The fraud loss for selecting the model complexity
in fraud detection

Simon Boge Brant & Ingrid Hobaek Haff

To cite this article: Simon Boge Brant & Ingrid Hobaek Haff (2022): The fraud loss for
selecting the model complexity in fraud detection, Journal of Applied Statistics, DOI:
10.1080/02664763.2022.2070137

To link to this article: https://doi.org/10.1080/02664763.2022.2070137

8 © 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

[N
h View supplementary material (&'

% Published online: 25 May 2022.

N
[:J/ Submit your article to this journal &

||I| Article views: 556

A
h View related articles &'

@ View Crossmark data (&'

o
£
£

B

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=cjas20

https://www.tandfonline.com/action/journalInformation?journalCode=cjas20
https://www.tandfonline.com/loi/cjas20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02664763.2022.2070137
https://doi.org/10.1080/02664763.2022.2070137
https://www.tandfonline.com/doi/suppl/10.1080/02664763.2022.2070137
https://www.tandfonline.com/doi/suppl/10.1080/02664763.2022.2070137
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2022.2070137
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2022.2070137
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2022.2070137&domain=pdf&date_stamp=2022-05-25
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2022.2070137&domain=pdf&date_stamp=2022-05-25

JOURNAL OF APPLIED STATISTICS Ialylcir & Francis
https://doi.org/10.1080/02664763.2022.2070137 aylor &Francis Group

8 OPEN ACCESS [l Checkforupdates‘

The fraud loss for selecting the model complexity in fraud
detection

Simon Boge Brant and Ingrid Hobaek Haff

Department of mathematics, University of Oslo, Oslo, Norway

ABSTRACT ARTICLE HISTORY
Statistical fraud detection consists in making a system that automat- Received 4 October 2021
ically selects a subset of all cases (insurance claims, financial transac- Accepted 20 April 2022

tions, etc.) that are the most interesting for further investigation. The KEYWORDS
reason why such a system is needed is that the total number of cases Fraud detection;
typically is much higher than one realistically could investigate man- hyperparameter; penalised
ually and that fraud tends to be quite rare. Further, the investigator regression; boosting;
is typically limited to controlling a restricted number k of cases, due cross-validation

to limited resources. The most efficient manner of allocating these

resources is then to try selecting the k cases with the highest proba-

bility of being fraudulent. The prediction model used for this purpose

must normally be regularised to avoid overfitting and consequently

bad prediction performance. A loss function, denoted the fraud loss,

is proposed for selecting the model complexity via a tuning param-

eter. A simulation study is performed to find the optimal settings for

validation. Further, the performance of the proposed procedure is

compared to the most relevant competing procedure, based on the

area under the receiver operating characteristic curve (AUQ), in a set

of simulations, as well as on a credit card default dataset. Choosing

the complexity of the model by the fraud loss resulted in either com-

parable or better results in terms of the fraud loss than choosing it

according to the AUC.

1. Introduction

Fraud detection has cropped up as a term in statistical research at least since the early
1990s. In the excellent review article by Bolton and Hand [1], the authors identify some of
the characteristics that make statistical fraud detection a distinct field of the statistical lit-
erature, and not just a special case of binary classification, or some other well-understood
problem class. The goal of statistical fraud detection, is to create a system that automat-
ically selects a subset of all cases, (insurance claims, financial transactions, etc.), that are
the most interesting cases for further investigation. This is necessary because there is typ-
ically a much higher number of claims than one realistically could investigate manually,
and because fraud is typically quite rare. In simple terms, statistical fraud detection can

CONTACT Simon Boge Brant @ simonbb@math.uio.no
@ Supplemental data for this article can be accessed here. https://doi.org/10.1080/02664763.2022.2070137

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2022.2070137&domain=pdf&date_stamp=2022-05-25
mailto:simonbb@math.uio.no
https://doi.org/10.1080/02664763.2022.2070137
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 (& S.B.BRANTANDI.H.HAFF

be thought of as binary classification, potentially with highly imbalanced classes, depend-
ing on the type of fraud. By imbalanced classes we mean, in this case, that there are very
few occurrences of one of the two possible outcomes. In other words, the vast majority of
financial transactions or insurance claims are legitimate, and fraud is, relatively speaking,
a rare occurrence.

In fraud detection applications, the investigator is often required to efficiently allocate
limited resources. This amounts to selecting a restricted number of cases that are most
likely to be fraudulent, or most worthy of investigation. In order to achieve this, a model
should be fitted to recorded data of previously investigated cases, and then used to predict
the probability of fraud on new cases. The set of cases to be investigated should subse-
quently be determined from the predicted probabilities. In this respect, we have a precise
notion of what a good or bad model is for this purpose, namely one that lets us pick a cer-
tain number of cases, such that as many as possible of these are actual cases of fraud. Given
the application, we term this notion fraud loss. However, we acknowledge that it has been
studied in other contexts under different names — notably by Clémencon and Vayatis [5],
where they refer to the problem as finding the best instances, or classification with a mass
constraint.

The problem of minimising fraud loss, or finding the best instances is equivalent to max-
imising a measure known as the precision at k in the field of information retrieval. This is
discussed amongst others by Robertson and Zaragoza [18], Joachims [13], and Boyd et al.
[2]. A related problem is that of local bipartite ranking, where the aim is to find the best
pairwise ranking of a subset of the data. In the language of Clémencon and Vayatis [5],
the focus is then not only on finding the best instances, but to rank the best instances. The
goal in this setting is not only to select the k most relevant instances, but also to rank them
as well as possible. In the context of fraud, this corresponds to selecting k cases such that
as many as possible are positive, and that if they are ordered according to their predicted
probability of fraud, the greatest possible number of the selected positive cases are ranked
higher than the selected negative cases.

There are several suggestions for how to estimate a model in order to solve these and
related problems. Boyd et al. [2] propose an estimation criterion that should result in model
that finds the best instances. This criterion involves minimising a hinge-type loss function
over all pairs of observations with opposite outcome. The number of optimisation prob-
lems to solve in the estimation procedure is then twice the number of pairs. Rudin [19]
proposes an estimation framework that concentrates on the top ranked cases, called the
P-norm push. Her method is inspired by the RankBoost algorithm of Freund et al. [10] for
minimising the ranking loss, extending it RankBoost to a more general class of loss func-
tions. Eban et al. [7] propose estimation methods aiming to maximise different measures
relevant to ranking, such as the area under the precision-recall curve and the recall at a
fixed precision. They do this by approximating the false positive and the true positive rates
in the objective function. Their aim is to construct the objective function in such a way
that the derivatives have more or less the same complexity as those of the log-likelihood
function of a logistic regression model. This makes the method a lot more scalable than
those of Rudin [19] and Boyd et al. [2].

As opposed to the above mentioned papers, we will not focus on the estimation of the
model parameters directly, but rather on choosing the complexity of the model, via a tuning
parameter. More specifically, we will consider maximisation of the likelihood function of

JOURNAL OF APPLIED STATISTICS . 3

the statistical model with regularisation, using penalised methods, or boosting. Different
values of the regularisation parameters will then result in models of varying complexity.
The model is to be used for a very specific purpose, namely to make predictions in order
to select the k most likely cases of fraud among a new set of cases. Therefore, it seems
reasonable to try to choose the regularisation parameters that are optimal for this partic-
ular application. In that context, we define a loss function, which, broadly speaking, is the
number of non-fraudulent cases among the k selected.

An important question is how to estimate the out of sample value of the fraud loss func-
tion in order to select tuning parameters. There are a number of different out of sample
validation techniques based on the training data. They all involve fitting models to differ-
ent subsets of the data, and evaluating the error on the data points that are left out. As the
application is somewhat special, standard settings and techniques may not be adequate.
For instance, predicted class labels will depend on an empirical quantile of the predicted
probabilities, which might require subsamples of a certain size to be stable. Therefore we
will investigate what the best strategies for the out of sample validation are.

The paper is organised as follows. Section 2 defines the models that are used, whereas
Section 3 describes the actual problem. Further, the approach for selecting the model com-
plexity with fraud loss is presented in Section 4. In Section 5, the properties of the proposed
method is evaluated in a simulation study, and the method is further tested on real data in
Section 6. Finally, Section 7 provides some concluding remarks.

2. Models

In order to detect fraud, one needs to find a model that produces predicted probabilities
of fraud, or at least predicted scores with the same ordering as the probabilities. In what
follows, Y denotes the outcome and X represents the p-dimensional random vector of
covariates. Although it could be useful to describe Y as a categorical or an ordinal vari-
able in some cases, we will concentrate on the binary case, where Y takes either the value
1 if the case is fraudulent or 0 if it is not.

In many cases, for instance if the covariates are noisy or high-dimensional, the predictive
accuracy of the model can be improved by shrinking the predicted probabilities towards
the common value % >, yi» which is the estimate of the marginal probability Pr(Y = 1).
Our aim is to select the model complexity in such a way that we are able to choose the k
most likely cases of fraud, for some specific k, based on the predictions from the resulting
model, as we will describe in Section 3.

We will in all cases consider models where

o <Pr(Y=1|X:x))_ ®)
S\pry=ox=x/) """

The model 5(x) could be a linear function of the covariates, or an additive model
where each component is a regression tree. This specification implies that the conditional
probabilities of an event will take the form

exp(ni(x;))

po) =Pr(¥i=11X;=x) = 7=)

(1)

4 (&) S.B.BRANTANDI.H. HAFF

The fraud indicators Y; are assumed to be conditionally independent and Bernoulli-
distributed with probabilities p(x;), given X; = x;. That leads to a binary regression model
with a logit link function with the log-likelihood function

n

=" log(p)'(1—p)") =D (ymi — log(l — py)),
i=1

i=1

where p; is a shorthand for p(x;).

As mentioned earlier, we wish to do shrinkage on the model. In the case of a parametric
linear model 1(x) = By + B'x, this would correspond to shrinking the regression coeffi-
cients (Bo, ;§) towards zero, and for a tree model to reducing the number of trees, the depth
of each tree, and possibly also the weights assigned to the leaf nodes. One option in the case
of the linear model is to only look for solutions where (Bo, ﬁ) is within a certain euclid-
ian distance of the origin. This regularised estimator is the maximiser of the penalised
log-likelihood function I(By, B) — A 23?21 ,8}2 and is the solution to

n p
argmax Zy,'ﬁ,' —log(1 —pi) — Z ,sz, (2)
o, B i=1 j=1

This is often referred to as ridge regression [12], or L,-penalised logistic regression, since
it assigns a penalty to the squared L,-norm of the parameters. Similar estimators such as
the lasso [20] or the elastic net [21] can be constructed by considering different norms, i.e
L; norm and a convex combination of L; and squared L, norm, respectively.

We will also consider additive models of the form

M
N =fo+ Y £, (3)

=1

where fj is a constant function and each fj(x) = Zthl cZ(x € Ry) is aregression tree, that
for a partition {Rt}tT:1 of R? takes a constant value ¢; for all x in each R;. These models
are typically fitted by gradient boosting [11], an iterative procedure where one starts with a
constant, then adds one component at a time by maximising a local Taylor approximation
of the likelihood around the current model. Usually, this update is scaled down by a factor,
i.e.multiplied by some number v € (0, 1), in order to avoid stepping too far and move past
an optimum of the likelihood function. Several highly efficient implementations to fit such
models exist, such as LightGBM [15], CatBoost [6] and XGBoost [3]. The flexibility that
such models offer, especially if the individual trees are allowed to be complex, will easily
lead to models that capture too much of the variability in the training data. In order to
avoid this, and get a stable model, we will control the total number M of components in
the model, and constrain the complexity T of each tree.

3. Problem description

An informal description of the fraud detection problem was given in the introduction.
Here, the problem will be defined and explained in more detail. Formally, we can describe

JOURNAL OF APPLIED STATISTICS . 5

our version of a fraud detection problem as follows. We divide the total dataset into a train-
ing set of size ny and a test set of size ng,. Further, the (p 4 1) dimensional random vectors
(Y5, X)), i =1,...,n4 + ng are assumed to be iid, and the main interest is the conditional
distribution of Y; given X;. In what follows, n will denote for the size of a sample, regardless
of whether the sample in question is the test set or the training set, unless it is unclear from
the notation which one is referred to.

Since the goal of the investigation is to uncover fraud, there should be as many actual
cases of fraud as possible among the ones selected for investigation. This amounts to pro-
ducing n predictions {?i}?zl, such that k of these have the value 1. Therefore, the minimiser
of the loss function is a model that minimises

[fraud _ i(l — Y,')?,’, s.t. i?, =k.

i=1 i=1

This is equivalent to minimising the classification error
n n n
LI ="y = Y| =) A-Y)YV;+) _ Y1 -7,
under the same constraint. Since) -, Y; = k, we have

n n n
[fraud _ Jo _ Z Y;Y; and L% =+ Z Yi— 22 108

i=1 i=1 i=1

so the two must have the same minimiser.

The idea is to minimise the expected value of E{Zﬂud, which is the fraud loss for the test
set. It would therefore be illuminating to know what the minimiser is, i.e. what it is that
one is attempting to estimate. Let P; = Pr(Y; = 1|Xj). then we can write

E (szaud) —F (1;(1 - Yi)?i) =E (IE (;(1 — Y)Y, xte>)
=E (i(l - P»’ﬁ-) ,
i=1

The minimiser of the above expectation over all vectors Y, having all elements equal to
zero, except exactly k elements that are equal to one, is the vector Y* satisfying

Y =Z(P; > Piu_ki1)s
where Py < --- < Py are the conditional fraud probabilities P; for the test set, sorted in
ascending order. This is an indicator of whether P; is among the k largest in the test sample.
Thus, a quite natural approach is to fit a model for the regression function p(x) = Pr(Y =

6 (&) S.B.BRANTANDI.H.HAFF

1|X = x), resulting in the predicted probabilities p;, and then use the prediction

Y =Z®i = Pinisn)- (4)

4, Selecting the model complexity

We want to find the model that minimises the fraud loss function. This is done by fitting a
sequence of models, either by solving (2) for a sequence of values of the penalty parameter
A, or by fitting the additive tree model (3) with via gradient boosting, where each model has
a different number M of components. Choosing the best of these corresponds to selecting
a value of X in the former case, and M in the latter case. However, the main interest is not
the best possible fit to the training data, but rather the best possible performance on a new
dataset. This may be determined by this estimating the relative out of sample performance
of each model via repeated cross validation, or bootstrap validation. As mentioned in the
introduction, we will study how different validation schemes perform. Both bootstrap val-
idation and cross-validation involve splitting the data in different subsets, and repeatedly
using some of the data for fitting, and the rest to evaluate the fitted models. Since the model
is evaluated on datasets whose size #,,4 is not in general the same as the size of the test
set, 1y, we let the number of selected observations be k = [#1.y47], i.e. the nearest integer
tO Mgy T, Where T = n% € (0,1) is the proportion of the cases in the test set we want to
select.

We evaluate the classification error using cross-validation with L folds and D rep-
etitions. The data are split into different folds by randomly assigning observations
to each fold, thus creating D sequences of L non-overlapping subsets of the integers
{1,2,...,n}, which we denote as {A(d)}
given by

1 d=1,...,D. The cross-validation a statistic is

S ieaw (1 =yJi (@)

’fmud() = Z Z

d ~ld
bimlo |A(' Liean i (T)
Wlthy (t) - I(pl = p("eval (Mevart] +1))’

as described in expression (4) of Section 3.

An alternative to cross-validation is bootstrap validation, where one for each fold draws
observations from the training set with replacement, usually as many as the number of
training observations. The left-out observations from each fold are then used for validation.
The probability that a specific observation is left out of a bootstrap fold when the bootstrap
folds are of the same size as the training set is equal to (1 — %)", which when n increases
converges to e~! A 0.368. This means that the validation sets on average will contain a
little over a third of the total training data.

In a standard binary classification setting, one can compute a statistic that mimics a leave
one out cross-validation error as

or ErrM (1) = ,

B = L3 S LT @) o 3 Y L<yz,y:‘b<r>>
- B

JOURNAL OF APPLIED STATISTICS . 7

where Iib is an indicator of whether the ith observation is not included in the bth boot-
strap sample, and 37,-"}’ is the prediction obtained for observation i from the bth model fit,
the former expression stemming from Efron and Tibshirani [9] and the latter from Efron
[8]. According to Efron and Tibshirani [9] these will be close for larger values of B. The
bootstrap statistic we will use is based on the latter, and is given by

Afmud Zh 1 I, (1-)’1))’ (T)
(v) = § : i T
Faoor Yoo S 12 (o)

5. Simulation study

In order to study how well selecting the model complexity via a tuning parameter based on
the fraud loss works, we will perform a simulation study. First, we examine and compare
different setups of the selection approach. Subsequently, we make a comparison to the most
relevant alternative approach, based on the AUC.

5.1. Covariates

We want the synthetic datasets to possess many of the same characteristics as real datasets
from fraud detection applications. The common traits that we want to replicate, at least to
some degree, are correlated covariates, with margins of different types, some continuous,
some discrete, and an imbalance in the marginal distribution of the outcome.

In order to draw the covariates, we use the following procedure. First, we draw a sample
of a random vector, from a multivariate distribution with uniform margins, i.e. a copula
[17]. After simulating observations from the copula, each of the margins are transformed to
one of the distributions listed in Table 1. The copula we will use is the ¢, r-copula. Data are
then simulated by drawing from a p-variate #, r-distribution, i.e. a standard ¢-distribution
with a p x p correlation matrix R and 2 degrees of freedom. Then, the margins are trans-
formed via the (univariate) ¢,-quantile function, which makes the margins uniform, but
still dependent.

We specify the correlation matrix R of the multivariate ¢-distribution by drawing a
matrix from a uniform distribution over all positive definite correlation matrices, using
the algorithm described by Joe [14]. When looking at comparisons across a number of
different datasets, we always keep the correlation matrix R fixed. Setting the correlation
matrix by simulating it via an algorithm is just a pragmatic way of specifying a large corre-
lation matrix, while ensuring that it is positive semidefinite. As for the correlation matrix,

Table 1. List of the 17 different marginal distributions
used to simulate covariates.

Family Parameters Values
Bernoulli p 0.2,0.4,0.6,0.8
Beta (v, B) (1,2),(2,1),(2,2)
Gamma (a,8) (1,3, 3N, 3,3)
Normal (n,0) ©,1)
Student's t v 3,4,6

Poisson A 1,3,5

8 (& S.B.BRANTANDI.H.HAFF

the distributions for the margins are also drawn randomly from a list, and these are also
kept fixed whenever we consider comparisons across different datasets.

5.2. Probabilities

Given the simulated covariates x, probabilities p(x) are computed, and the binary outcomes
i are simulated from Bernoulli(p(x;)) distributions, where i = 1,.. ., n. The probabilities
follow the form (1) with n(x;)) = Bo + f(x), where the model, f(x), is either the linear
f(x) = B'x, or an additive model of the form (3), where the components are trees. Unless
otherwise stated, we simulate datasets with p = 100 covariates. In the model with a linear
predictor, we let 15 of the 100 covariate effects be non-zero, and let these take values in the
range (—0.77,0.62), with an average absolute value of 0.34.

In order to specify a tree model, we draw a covariate matrix X, and a response to be used
only for constructing the trees. The response follows the model BE; — (1 — B)E,, where
B is a Bernoulli(0.5) variable, and E;, E, are exponentially distributed with parameters
A1 = 0.2and A, = 0.1, respectively. We then fit an additive tree model to this, based on 15
of the 100 covariates. The resulting model is used to generate datasets, keeping the model
fixed across the different datasets.

In both models, the parameter By can change from dataset to dataset, as the average
probability pg, which is an estimate of the marginal probability of fraud Pr(Y = 1), should
be kept fixed. To achieve this, we solve the equation

1 n
- Z p&xi) = po
i=1
numerically, given the model f(x) and the covariate values x;,i = 1,.. ., n.

5.3. Data drawn from a logistic regression model

We first consider penalised logistic regression. We draw two datasets from a logistic regres-
sion model, one for estimation, and one for testing, by the method described previously,
both with n = 1000 observations. The coefficient B is first set so that pg = 0.2, which is in
the higher range compared to a typical fraud detection setting. In order to select the value
of the regularisation parameter A, we compare bootstrap validation, and repeated cross-
validation with 10, 5, 3, or 2 folds. We also try drawing the folds stratified on the outcome,
so that each fold has the same proportion of positive outcomes as the training sample. All
the experiments are repeated for S = 100 simulated datasets.

In order to make the comparison fair, we balance the number of bootstrap folds and
the number of repetitions for the cross-validation, so that the computational complexity is
roughly the same, assuming that the computational complexity of fitting a model is propor-
tional to the number of observations. All validation procedures are adjusted so that they are
comparable to 10-fold cross-validation without repetition. Since this involves fitting mod-
els to 10 different datasets of .9 times the size of the total, we use 9 folds in the bootstrap
validation, and 2, 4, and 9 repetitions of 5-, 3-, and 2-fold cross-validation, respectively.
We also do the same, with double the number of repetitions across 10-, 5-, 3- and 2- fold
cross-validation, and with 18 bootstrap folds.

JOURNAL OF APPLIED STATISTICS e 9

The relative average fraud loss (RAFL), compared to the minimum over the alternatives
for A used in each simulations = 1,2, ..., S,

S Yo —
RAFL(7) = Zs:sl Z?:nl }’ifiiv(l — ¥is)/ ZZZI yAi
Doomt 2im Vis (L= yis)/ 2o, is™

is computed for each simulation for r = 0.01, 0.02, . ..,0.98,0.99, and reported in Table 2,
where y;5 = 7i5(7), as explained in Section 4. As expected, doubling the number of repeti-
tions leads to better performance. Looking at the different validation schemes, it seems like
there is a tendency that cross-validation with 2 or 3 folds is the better option, and that there
is a slight advantage to stratification, but this does not seem very conclusive. Based only on
these results, we would therefore suggest using 2-fold cross-validation, and to stratify on
, at least if there are so few observations where y = 1, that there is a risk of getting folds
where all observations have a negative outcome.

In Figure 1, the logarithm of the average relative fraud loss is plotted as a function of
the proportion of cases that are selected, for a selection of the validation procedures. From

Table 2. RAFL(t) averaged over the different values of 7, data simulated from linear model, model fitted
using a linear model. 1000 observations with 100 covariates, both in training and test sets.

Notes 10-fold cv 5-fold cv 3-fold cv 2-fold cv Bootstrap
1.0764 1.0766 1.0753 1.0725 1.0763
stratified 1.0745 1.0767 1.0730 1.0743 1.0768
2x repeat 1.0385 1.0366 1.0364 1.0366 1.0389
2x repeat, stratified 1.0396 1.0384 1.0355 1.0354 1.0366
2x repetition
249 | ----- 3—fold 249 | ----- 3—fold
fffff 10—fold(strat) ----- 10—fold(strat)
----- 2—fold ----- 2—fold
fffff Bootstrap(strat) ----- Bootstrap(strat)
i
]
]
2 o |] =
=} = 1 k= -
= | =
g | =
2 ? 2
= | k]
[| (=] i
=) k| =) |
= | = |
= o i = w |
s <= i g 3 :
1 !
5 il
! ‘n
! 1
1) 5
"y t,
o | ‘“"‘—»N, ____________ - = | “""‘"“-‘w—
o o
T T T T T T T T T T T T
0.0 02 04 06 0.8 1.0 0.0 02 04 06 0.8 1.0
K/n

K/n

Figure 1. Plot of log(RAFL(t)) against the fraction T = k/n of the observations that are selected, for a

selection of the methods for setting the tuning parameter. Logistic regression models were used both to
simulate the data, and to make predictions.

10 (&) S.B.BRANTAND L H.HAFF

Table 3. RAFL(t) averaged over the different values of 7, data simulated from linear model, fitted
additive tree model. 1000 observations with 100 covariates, both in training and test sets.

Notes 10-fold cv 5-fold cv 3-fold cv 2-fold cv Bootstrap
1.2060 1.1779 1.1617 1.1424 1.1578
stratified 1.2123 1.1716 1.1534 1.1403 1.1496
2x repeat 1.0586 1.0507 1.0526 1.0541 1.0464
2x repeat, stratified 1.0552 1.0523 1.0499 1.0515 1.0472

these, we see that there is not a very large difference between the different types. Further,
it is hardest to select the top k cases for lower values of 7, and thus of k, as expected.

We repeat this experiment for the same datasets, but instead of estimating the proba-
bilities using a penalised logistic regression model, we use an additive tree model fitted by
boosting. The penalty parameter we are trying to select is now the total number of com-
ponents of the additive model, i.e. M in (3). Corresponding results to those in Table 2 and
Figure 1 are shown in Table 3 and in Figure 1 in the supplementary material, respectively.
Compared to the ridge regression fits, the relative average fraud loss is now greater, mean-
ing that the selected model differs more in size, compared to the minimum for each value
of 7. The best alternative now seems to be the bootstrap variants, with stratified 3-fold
cross-validation being the closest contender.

5.4. Data drawn from an additive tree model

Next, we do a similar experiment, but drawing the data from a model where the linear
predictor is replaced with an additive tree model, as previously outlined. We first estimate
models using penalised logistic regression. The results of this are summarised in Table 2
in the supplementary material, and are very similar to previous results.

We also estimate additive tree models, the results for which are summarised in Table 4.
In addition, we here also fit models to data simulated from the same type of model,
but where py = 0.05, i.e. more severely imbalanced, which is not uncommon in fraud
detection. The results of the latter are summarised in Table 5. In the first case, 2-fold
cross-validation gave the best results, with stratified 3-fold cross-validation in second place.
Curiously, the error does not seem to be smaller when doubling the number of repetitions,
which could suggest that it is easier to select the best model for the data simulated from a
more complex model. For the latter case, 2-fold cross validation seems to be the best option,
based on the aggregate relative average fraud both when the marginal probability of Y = 1
is po = 0.2 and when py = 0.05. It could be argued that real data are most likely not sim-
ilar to a logistic regression model with a linear predictor, but rather more complex, and
therefore that repeated 2-fold cross-validation seems like the more reliable option, overall.

Table 4. RAFL(t) averaged over the different values of t, data simulated from additive tree model, fitted
additive tree model. 1000 observations with 100 covariates, both in training and test sets.

Notes 10-fold cv 5-fold cv 3-fold cv 2-fold cv Bootstrap
1.0463 1.0450 1.0452 1.0454 1.0450

stratified 1.0469 1.0474 1.0457 1.0451 1.0454

2x repeat 1.0467 1.0464 1.0456 1.0435 1.0451

2x repeat, stratified 1.0473 1.0453 1.0464 1.0450 1.0452

JOURNAL OF APPLIED STATISTICS 1

Table 5. RAFL(7) averaged over the different values of 7, data simulated from additive tree model, fitted
additive tree model, with py = 0.05, fitted additive tree model. 1000 observations with 100 covariates,
both in training and test sets.

Notes 10-fold cv 5-fold cv 3-fold cv 2-fold cv Bootstrap
1.0194 1.0197 1.0195 1.0194 1.0194
stratified 1.0193 1.0196 1.0195 1.0189 1.0194
2x repeat 1.0198 1.0196 1.0193 1.019 1.0197
2x repeat, stratified 1.0195 1.0196 1.0196 1.0191 1.0193

5.5. Comparisons with an alternative approach

Next, we want to compare our method to the estimator obtained when setting the penalty
parameter using the AUC (area under the receiver operating characteristic curve) as a
criterion, here estimated by the Wilcoxon type statistic

Yoy 2}1:1(1 — vy (P(x)) > p(xi))
i1 Yi i (1= 1) '

AUC =

The AUC is a popular measure for judging how good a binary regression model is at dis-
crimination. Further, it is related to ranking, and is therefore a natural alternative to fraud
loss. In fact, the AUC can on a population level be seen to be equivalent to the probabil-
ity that an observation with Y = 0 will be given a lower probability than one with Y = 1.
Hence, if one model has a higher AUC than another, then the aforementioned probability
will be highest for the model with the highest AUC [4]. Symbolically, this can be written as

AUC (p) = P (p(xs) = p(xp|Yi = 1,Y; = 0).

Likelihood, or likelihood-based measures such as Akaike’s information criterion (AIC)
are also commonly used to set tuning parameters, but we will here disregard these. The
reason for this is both that we do not see them as particularly relevant for the problem, as
we are not interested in finding the model that best fits all the data, and also that the log-
likelihood often explodes numerically when some of the probabilities become very close to
1. In our experiments, this happened often when we evaluated the likelihood for the data
that were not used for estimation in a cross-validation procedure.

We start with a simulation study using the same simulation models as previously dis-
cussed. The RAFL(t), averaged over values of from 0.01 to 0.99, for models where the
penalty parameter is chosen using repeated 2-fold cross-validation of the AUC and the
fraud loss, respectively, are reported in Table 6 for py = 0.2 and in Table 7 for py = 0.05. In
addition, we report an aggregate over a smaller range of values of r = 0.16,0.17,...,0.25
for pp = 0.2 and 7 = 0.03,0.04, .. .,0.10 for pp = 0.05, which is are the most interesting
values in the fraud setting. When looking at the aggregate over t from 0.01 to 0.99, it seems
that it is advantageous to use the fraud loss when estimating an additive tree model, what-
ever the data generating model is. This is also the case when considering an aggregate over
the smaller ranges of t-values, and in addition, the fraud loss works slightly better when
fitting penalised logistic regression models to data simulated from an additive tree model.
In Figure 2 and 3, the average difference in fraud loss for the two estimators is plotted as a
function of 7. It seems that in neither case, one or the other estimator is consistently better
across the entire grid t = 0.01,0.02, ...,0.98,0.99.

12 (&) S.B.BRANTAND I.H. HAFF

Table 6. RAFL(7) averaged over the different values of T, comparison of AUC
and fraud loss. 1000 observations with 100 covariates, both in training and
test sets where pg = 0.2.

Simulation model Logistic Logistic Additive trees Additive trees
Estimation model Logistic Additive trees Logistic Additive trees
Average over all T = 0.01,0.01,...0.99:

auc 1.0335 1.0763 1.0186 1.0482
fraud 1.0371 1.0741 1.0195 1.0442
aug, 2x repeat 1.0337 1.0730 1.0183 1.0470
fraud, 2x repeat 1.0350 1.0721 1.0186 1.0454
Average over T = 0.16,0.17,...0.24,0.25:

auc 1.0349 1.0626 1.0228 1.0583
fraud 1.0356 1.0591 1.0232 1.0531
augc, 2x repeat 1.0338 1.0610 1.0228 1.0570
fraud, 2x repeat 1.0359 1.0601 1.0225 1.0545

Table 7. RAFL(7) averaged over the different values of T, comparison of AUC
and fraud loss. 1000 observations with 100 covariates, both in training and
test sets where py = 0.05.

Simulation model Logistic Logistic Additive trees Additive trees
Estimation model Logistic Additive trees Logistic Additive trees
Average overall T = 0.01,0.2,...0.99:

auc 1.0108 1.0185 1.0135 1.022
fraud 1.0137 1.0181 1.0131 1.0194
auc 2x repeat 1.0108 1.0185 1.0128 1.022
fraud 2x repeat 1.0121 1.0175 1.0126 1.0198
Average over T = 0.03,0.04, . ..0.09,0.10:

auc 1.0549 1.089 1.0427 1.0664
fraud 1.0638 1.0879 1.0413 1.0617
auc 2x repeat 1.0551 1.0891 1.0411 1.0655
fraud 2x repeat 1.0593 1.0855 1.0397 1.0635

We repeat the experiment, but now we expand the datasets so that the number of
covariates is p = n = 1000. These are simulated in the same way as for p = 100. We again
simulate data both from a logistic regression model, and from an additive tree model, and
scale the number of covariates the response depends on with the dimension of the covari-
ate matrix, so that it, in both cases, it depends on 150 covariates. For the logistic regression
model, the 150 non-zero effects take values in the interval (—0.67,0.85), and the average
absolute value of these is 0.198. The results for all four combinations of data-generating
model and estimated model, which are shown in Tables 2 and 3 and Figures 2 and 3 in the
supplementary material, are similar to the ones for p = 100.

We repeat the experiment a final time, now in a context where p > n. Specifically, we
let p = 4000, while keeping the number of observations at # = 1000. Everything is scaled
up in the same way as when the number of covariates was changed to p = 1000, with the
exception of the correlation matrix R, which we now construct from one (1000) x (1000)
correlation matrix that we stack diagonally, giving us a block-diagonal correlation matrix
where 4 x 10° out of the 16 x 10° entries are non-zero. We see in Tables 8 and 9 that
for the case when py = 0.2, the models selected using the fraud loss did somewhat bet-
ter aggregated over all values of 7, except when estimating an additive tree model on data
from a logistic regression model. For the aggregate over the smaller range of 7, the models

JOURNAL OF APPLIED STATISTICS 13

sim: logistic, fit: logistic sim: logistic, fit: boosted trees
o~
- N
o
= -~ =] —
3 o]
5 g7 - 8 S - -
o — o
s 2 s .
2 < 7 a ~
s ' g 8
g |
<I3 T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T
sim: boosted trees, fit: logistic sim: boosted trees, fit: boosted trees
o~
N —
o~]
3 Rl
(SR [
—“— o = —
7] 2
o S <= -
— o — o
| =T et - |
o o —
8 8 o
8 o 8 T 7
o 1 o
S S -
o~ =
(== o
! T T T T T T ! T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

Figure 2. Plot of the difference in RAFL(t) when selecting the model according to the AUC and fraud
loss, respectively. Data are simulated from a logistic regression model or additive tree model, with
n = 1000 observations, p = 100 covariates, and py = 0.2. The grey bars correspond to empirical 80%
confidence intervals.

selected using the fraud loss were only better when estimating a logistic regression model
to data simulated from a logistic regression model. For the case where py = 0.05, the mod-
els selected using the fraud loss were better aggregated over all 7-values when the data were
simulated from an additive tree model. For the aggregate over the smaller range of t, they
were also better when estimating a penalised logistic regression model to data simulated
from a logistic regression model. The difference in fraud loss for the models selected using
the two approaches is also displayed in Figures 4 and 5 in the same way as for p = 100 and
p = 1000. In some of the cases, it is still hard to see a large clear difference between the two
models. However, for py = 0.2, the models chosen using the fraud loss seem to do better
for smaller values of 7 fitting a logistic regression model to data simulated from an additive
tree model. For py = 0.05, the performance of the two methods was similar when the data
were simulated from the same type of model as the estimation model, whereas the fraud
loss based method worked better than the AUC based one when the a penalised regression
model was fitted to data simulated from a tree model, and somewhat worse when a tree
model was fitted to data simulated from a logistic regression model, especially for 7 up to
around 0.1.

Allin all, setting the tuning parameter by cross-validating the fraud loss, seems to work
quite well, compared to using the AUC, especially for values of T smaller than or close to
the marginal probability py of Y = 1. This is good, as one could argue that these are the
most interesting values in most fraud detection applications. The fraud loss does not out-
perform the AUC in all cases, such as for the boosted tree models for p > n, or the penalised

N
wv

. B.BRANT AND I. H. HAFF

sim: logistic, fit: logistic sim: logistic, fit: boosted trees
= S
s T s T
=] = -
g 8 g
“— =) -
3 g 3 1" -
o o
— p=4 —
1 g I J'w - 1 —
g s 2
2 . g T
S = —
) o
o o
= S
? T T T T T T ? T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T
sim: boosted trees, fit: logistic sim: boosted trees, fit: boosted trees
=]
=
=] - =]
E g 8 4
- (=T — (=]
8 o 2
o o
i — A - - § — 2
o w0 o
= o =
© P ©
o0 1 o —
&8 &8
— - —
e =
?‘ - T T T T T T ? _I T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

Figure 3. Plot of the difference in RAFL(t) when selecting the model according to the AUC and fraud
loss, respectively. Data are simulated from a logistic regression model or additive tree model, with
n = 1000 observations, p = 100 covariates, and py = 0.05. The grey bars correspond to empirical 80%
confidence intervals.

Table 8. RAFL(7) averaged over the different values of T, comparison of AUC
and fraud loss. n = 1000 observations with p = 4000 covariates, both in
training and test sets where py = 0.2.

Simulation model Logistic Logistic Additive trees Additive trees
Estimation model Logistic Additive trees Logistic Additive trees
Average over all T = 0.01,0.02,...0.99:

auc 1.0415 1.0526 1.0229 1.0453
fraud 1.0400 1.0577 1.0182 1.0457
aug, 2x repeat 1.0412 1.0520 1.0229 1.0443
fraud, 2x repeat 1.0388 1.0547 1.0187 1.0438
Average over T = 0.16,0.17,...0.24,0.25:

auc 1.0538 1.0605 1.0187 1.0507
fraud 1.0498 1.0655 1.0223 1.0585
augc, 2x repeat 1.0532 1.0567 1.0189 1.0491
fraud, 2x repeat 1.0468 1.0591 1.0239 1.0530

regression models when the data are simulated from a logistic regression model, and p < n.
A possible explanation for the first case could be that when estimating the probabilities is
hard, i.e. that p > n, and the data generating model is complex, then trying to adapt the
model locally to T could introduce instability. For the latter case, it could be that the esti-
mation problem is so simple that we more or less recover the data generating model, and
therefore, there might not be too much to gain from adapting the model to a specific t.

JOURNAL OF APPLIED STATISTICS ‘ 15

Table 9. RAFL(7) averaged over the different values of T, comparison of AUC
and fraud loss. 1000 observations with 4000 covariates, both in training and
test sets where py = 0.05.

Simulation model Logistic Logistic Additive trees Additive trees
Estimation model Logistic Additive trees Logistic Additive trees
Average overall r = 0.01,0.2,...0.99:
auc 1.0235 1.0207 1.0148 1.0188
fraud 1.0233 1.0227 1.0108 1.0185
auc 2x repeat 1.0199 1.0198 1.0162 1.0197
fraud 2x repeat 1.0225 1.0219 1.0108 1.0188
Average over T = 0.03,0.04, ...0.09,0.10:
auc 1.0895 1.0762 1.0389 1.0551
fraud 1.0759 1.0863 1.0284 1.0576
auc 2x repeat 1.0787 1.0745 1.0423 1.0582
fraud 2x repeat 1.0727 1.0845 1.0279 1.0572
sim: logistic, fit: logistic sim: logistic, fit: boosted trees
Lo P -
g o g "
T T T T T T ? - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T
sim: boosted trees, fit: logistic sim: boosted trees, fit: boosted trees
= @ _]
<'3 a T T T T T T ? _I T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

Figure 4. Plot of the difference in RAFL(t) when selecting the model according to the AUC and fraud
loss, respectively. Data are simulated from a logistic regression model or additive tree model, with
n = 1000 observations, p = 4000 covariates, and py = 0.2. The grey bars correspond to empirical 80%
confidence intervals.

6. lllustration on credit card default data

In this section, we will consider credit card default data, that are published on Kaggle by
Mishra [16]. These are not fraud detection data, as no such real data are publicly available.
However, they share many of the same characteristics as fraud detection data, in particular
the binary outcome and class imbalance.

The dataset consists of 307511 observations representing credit card clients, with a
binary outcome variable (default - no default), where roughly 8% are recorded as defaults,

. B.BRANT AND I. H. HAFF

—
o
wv

sim: logistic, fit: logistic sim: logistic, fit: boosted trees
o~ o~
S] S T
=] =]
S s
© -~ © —
“— o “—
] 2
S o an S o
L ° LS
s E]
o - © —
3 o a S
o 1 o]
) o
o~ o~
o o
! T T T T T T ! T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T
sim: boosted trees, fit: logistic sim: boosted trees, fit: boosted trees
=]
] =
E S g 8
= = =]
g2 2
S o yf““\nq..“ 2 8 fam |
1 S F{HH (A H[H L e e v etussetonss - 1 S
o o o
S]
© . @«
] a —
o = o
— =] —
?’ i o
T T T T T T ? - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

Figure 5. Plot of the difference in RAFL(t) when selecting the model according to the AUC and fraud
loss, respectively. Data are simulated from a logistic regression model or additive tree model, with
n = 1000 observations, p = 4000 covariates, and pp = 0.05. The grey bars correspond to empirical 80%
confidence intervals.

as well as 122 covariates There are too many covariates to list all of them in detail, but they
include information such as the clients gender, the size of the credit card loan, whether the
client owns a car, whether the client provided various information, the clients age, and dif-
ferent credit score values. A full overview of all the covariates is available on Kaggle [16].
Some of the covariates are categorical, for example one of the covariates is a record of the
education level of the client, which has 5 categories. We recode all such covariates as L—1
binary variables, where L is the number of categories of the variable. After we have recoded
the data in this way, the dataset now consists of p = 230 covariates. There are some missing
entries in the dataset, which we chose to impute using the median value. The data are split
randomly into a training and a test set of roughly the same size.

On the training data, we then fitted a logistic regression model with a ridge-type penalty,
and a boosted tree model where each tree is allowed to have a maximum depth of 3,
and chose the number of trees, and the size of the penalty using repeated 2-fold cross-
validation of the fraud loss and the AUC, with 9 repetitions. For each value of T = k/n on
0.01,...,0.99, we set the tuning parameter, either the number of components in the tree
model or the penalty parameter in the penalised logistic regression, by cross-validating the
fraud loss. In addition, we also set tuning parameters by cross-validating the AUC. Then,
we evaluated the chosen models on the test data.

The results are summed up in Table 10 and Figure 6, where the fraud loss is plotted as
a function of 7 for both models, and both of the ways of setting the tuning parameter. As
we can see from Figure 6, there is little difference between the two ways of choosing the

JOURNAL OF APPLIED STATISTICS ‘ 17

Table 10. RAFL(t) averaged over different values of
7, with aggregated fraud loss (i.e. the numerator of
RAFL(t)) given in parentheses. Comparison of AUC and
fraud loss on the credit default dataset from Kaggle.

Estimation model Logistic Additive trees
Average over all r = 0.01,0.02, . ..0.99:
auc 1.00045 (0.8474) 1.00104 (0.8450)
fraud 1.00057 (0.8475) 1.00097 (0.8449)
Average over T = 0.05,0.06, ...0.12,0.13:
auc 1.0015 (0.7338) 1.0042 (0.7252)
fraud 1.0011(0.7335) 1.0036 (0.7248)
penalised logistic boosted trees
S - S -
=3% =1
2 8
o (=}
S 8 -
=—1% =}
g e | g e _
= =4 =] =}
s s
I.I‘: o L‘E o
= [
=3} =1
=% i
g | % g |
= oy P=J
g |, ! g ™
=N = i | 4+ Fraud loss cv
i i < AUC cv
7o) ! 7o) ¥ ! |'----- Fraud propportion
8 4 8 1T
(=3 T T T T T T =} T T T T T T
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0
T T

Figure 6. Plot of the fraud loss when selecting the model according to the AUC and fraud loss, respec-
tively on the credit default dataset from Kaggle.

tuning parameters for this dataset. Further, Table 10 shows that the performance is almost
identical when we average over all of the values for t. For the smaller range from v = 0.05
to T = 0.13, i.e. in closer proximity to the marginal balance of the data, the models where
we chose the tuning parameter by cross-validating the fraud loss were slightly better than
the model found by cross-validating the AUC for the additive tree model, and quite similar
for the ridge model. Finally, the fraud loss is smaller for the fitted tree models than for
the ridge ones, using both approaches, which suggests that the tree models are the most
appropriate for these data.

7. Concluding remarks

Statistical fraud detection consists in creating a system, that automatically selects a subset
of the cases that should be manually investigated. However, the investigator is often lim-
ited to controlling a restricted number k, or proportion 7, of cases. In order to allocate the

18 . S.B.BRANT AND I. H. HAFF

resources in the most efficient manner, one should then try to select the cases that have
the highest probability of being fraudulent. Prediction models that are used for this pur-
pose, must typically be regularised to avoid overfitting. In this paper, we propose a loss
function, the fraud loss, for selecting the complexity of the prediction model via a tun-
ing parameter. More specifically, we suggest an approach where either a penalised logistic
regression model, or an additive tree model is fitted by maximising the log-likelihood of a
binary regression model with a logit-link, and the tuning parameter is set by minimising
the fraud loss function.

In a simulation study, we have investigated different ways of selecting the model com-
plexity with the fraud loss, taking the out-of-sample performance into account, either by
cross-validation or bootstrapping. Based on this, repeated cross-validation with few folds
seems to be the most favourable. In particular, we have opted for repeated 2-fold cross val-
idation without stratification. Still, we recognise that stratification might be necessary if
there are very few cases of fraud in the training data.

Then, we carried out a larger simulation study, where we compared the performance of
setting tuning parameters by cross-validating the fraud loss, to cross-validating the AUC.
In these simulations, we saw that the fraud loss in some cases gave better results than the
AUCG, especially when p < n, and in some cases similar results. We saw a tendency that
the fraud loss can work better when the proportion of the cases we select is smaller than
or close to the marginal probability of fraud. We have also illustrated our approach on a
dataset of credit card defaults, where we made the same comparison as in the second round
of simulations. In this example, the fraud loss and the AUC performed quite similarly, but
the fraud loss did somewhat better for the additive tree models, which also resulted in lower
fraud loss than the ridge models, suggesting that the tree models were the most adequate
for these data.

We have focussed on two particular estimation methods and corresponding definitions
of the model complexity. The first is maximising the logistic log-likelihood function, sub-
ject to ridge regularisation, where the penalty parameter is the one to be chosen. The second
is boosting for an additive tree model, where the number of trees is the focus. The first could
however be easily adapted to the other types of regularisation, such as the lasso or the elas-
tic net. For the second, one might define the complexity in terms of for instance the size
of each tree. One could also imagine using the fraud loss to select the complexity for other
types of binary classification models.

Further, one might search for new divergences to optimise, that put more emphasis on
estimating the higher probabilities accurately, which is similar to the work of Rudin [19],
Boyd et al. [2] and Eban et al. [7]. Another alternative is to adapt regression trees to the
problem of picking a certain number of cases. This might be done by fitting small trees
directly combined with bagging, or by pruning a decision tree to minimise the fraud loss
after growing the tree using a standard splitting criterion.

Acknowledgements

The authors would also like to thank Riccardo De Bin, for his useful input, and participation in
discussions. We also thank the referees and Associate Editor for their help to improve this paper
with their constructive comments and suggestions.

JOURNAL OF APPLIED STATISTICS 19

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work is funded by The Research Council of Norway centre Big Insight [Project 237718].

References

(1]
(2]

(10]
(11]
(12]
(13]
(14]

[15]

R.J. Bolton and D.]J. Hand, Statistical fraud detection: A review, Stat. Sci. 17 (2002), pp. 235-249.
S. Boyd, Corinna. Cortes, Mehryar. Mohri, and Ana. Radovanovic, Accuracy at the top, in
Advances in Neural Information Processing Systems 25, F. Pereira, C.]. C. Burges, L. Bot-
tou, and K. Q. Weinberger, eds., Curran Associates, Inc., 2012, pp. 953-961. Available at
http://papers.nips.cc/paper/4635-accuracy-at-the-top.pdf.

T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of the 22nd ACM
Sigkdd International Conference on Knowledge Discovery and Data Mining, ACM, 2016, pp.
785-794.

S. Clémencon, G. Lugosi, and N. Vayatis, Ranking and empirical minimization of u-statistics,
Ann. Stat. 36 (2008), pp. 844-874.

S. Clémengon and N. Vayatis, Ranking the best instances, J. Mach. Learn. Res. 8 (2007), pp.
2671-2699.

A.V. Dorogush, V. Ershov, and A. Gulin, Catboost: Gradient boosting with categorical features
support, arXiv preprint arXiv:1810.11363, 2018.

E.E.T. Eban, M. Schain, A. Mackey, A. Gordon, R.A. Saurous, and G. Elidan, Scalable learning
of non-decomposable objectives, arXiv preprint arXiv:1608.04802, 2016.

B. Efron, Estimating the error rate of a prediction rule: Improvement on cross-validation,]. Am.
Stat. Assoc. 78 (1983), pp. 316-331.

B. Efron and R. Tibshirani, Improvements on cross-validation: The 632+ bootstrap method,].
Am. Stat. Assoc. 92 (1997), pp. 548-560.

Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer, An efficient boosting algorithm for combining
preferences, J. Mach. Learn. Res. 4 (2003), pp. 933-969.

J.H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Stat. 29
(2001), pp. 1189-1232.

A E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems,
Technometrics 12 (1970), pp. 55-67.

T. Joachims, A support vector method for multivariate performance measures, Proceedings of
the 22nd International Conference on Machine Learning, ACM, 2005, pp. 377-384.

H. Joe, Generating random correlation matrices based on partial correlations, J. Multivar. Anal.
97 (2006), pp. 2177-2189.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, Lightgbm: A highly
efficient gradient boosting decision tree, in Advances in Neural Information Processing Systems,
2017, pp. 3146-3154.

A. Mishra, Fraud detection dataset. Available at https://www.kaggle.com/mishra5001/credit-
card, 2019. Accessed: 01/02-2022.

R.B. Nelsen, An Introduction to Copulas, Springer Science & Business Media, 2007.
S.Robertson and H. Zaragoza, On rank-based effectiveness measures and optimization, Inf. Retr.
Boston. 10 (2007), pp. 321-339.

C. Rudin, The p-norm push: A simple convex ranking algorithm that concentrates at the top of
the list,]. Mach. Learn. Res. 10 (2009), pp. 2233-2271.

R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B (Methodol.)
58 (1996), pp. 267-288.

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser.
B (Stat. Methodol.) 67 (2005), pp. 301-320.

http://papers.nips.cc/paper/4635-accuracy-at-the-top.pdf
https://www.kaggle.com/mishra5001/credit-card

	1. Introduction
	2. Models
	3. Problem description
	4. Selecting the model complexity
	5. Simulation study
	5.1. Covariates
	5.2. Probabilities
	5.3. Data drawn from a logistic regression model
	5.4. Data drawn from an additive tree model
	5.5. Comparisons with an alternative approach

	6. Illustration on credit card default data
	7. Concluding remarks
	Acknowledgements
	Disclosure statement
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

