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Abstract. We generalise recent results of Afsar, Larsen and Neshveyev for product systems over
quasi-lattice orders by showing that the equilibrium states of quasi-free dynamics on the Nica-
Toeplitz C∗-algebras of product systems over right LCM monoids must satisfy a positivity condition
encoded in a system of inequalities satisfied by their restrictions to the coefficient algebra. We prove
that the reduction of this positivity condition to a finite subset of inequalities is valid for a wider
class of monoids that properly includes finite-type Artin monoids, answering a question left open
in their work. Our main technical tool is a combinatorially generated tree modelled on a recent
construction developed by Boyu Li for dilations of contractive representations. We also obtain a
reduction of the positivity condition to inequalities arising from a certain minimal subset that may
not be finite but has the advantage of holding for all Noetherian right LCM monoids, and we present
an example, arising from a finite-type Artin monoid, that exhibits a gap in its inverse temperature
space.

1. Introduction

A very rich context for the study of KMS states is provided by the C∗-algebras T (X) and
O(X) associated to a C∗-correspondence X by Pimsner [26]. These algebras can be endowed with
various quasi-free dynamics, and one of the key features of the resulting C∗-dynamical systems
is the relation between their KMS states and the traces of the coefficient algebra [17]. Since the
C∗-algebras associated to product systems of C∗-correspondences are natural generalisations of
Pimsner algebras [12, 28], it is natural to wonder about a similar study for product systems.

Along these lines, KMS states of Nica-Toeplitz C∗-algebras and their Cuntz-Pimsner quotients
for special cases of product systems have been studied in [13, 1, 6]. More recently, partly motivated
by the connection between combinatorial and analytic properties of quasi-lattice ordered monoids
initially explored in [6], Afsar, Larsen and Neshveyev have completely characterised the traces
of the coefficient algebra of a product system X that extend to KMS states of NT (X) for all
compactly aligned product systems over quasi-lattice ordered semigroups [3]. Their characterisation
provides a unified perspective of several special cases previously studied and consists of a system
of inequalities that amount to a positivity condition for induced traces. In principle such a system
involves infinitely many inequalities. But for product systems over right-angled Artin monoids A+

M ,
the positivity condition reduces to a more tractable system of inequalities that depends only on the
canonical generating set of A+

M and is finite whenever A+
M is finitely generated [3, Section 9]. This

immediately raises the concrete question of whether a similar result holds for other Artin monoids
or indeed other monoids P .

In this article we show that this ‘reduction of positivity to generators’ is valid for finite-type Artin
monoids, as well as other Artin monoids that are neither right-angled nor finite-type. Along the
way, we also obtain a simplified characterisation, valid when P is a Noetherian right LCM monoid,
in which the inequalities arise from a certain minimal subset Pinf of P that was recently introduced
in [20] by B. Li in the context of regular dilations of contractive representations of monoids.
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In order to describe our results in more precise terms, it is helpful to recall the abstract char-
acterisation of KMS states in terms of the systems of inequalities from [3]. We refer to Section 2
below for the necessary definitions.

Suppose that (G,P ) is a quasi-lattice ordered group, that X = {Xp}p∈P is a compactly aligned
product system of C∗-correspondences over P with Xe = A, that the C∗-algebraNT (X) is endowed
with a time evolution defined by a homomorphism N : P → (0,∞) and that β ∈ R. For a finite
subset K of P we denote by ∨K ∈ P ∪ {∞} the smallest upper bound of the elements in K. If
τ is a tracial state on A and p ∈ P , then Trpτ denotes the trace on A induced from τ through the
bimodule Xp as in [17, Theorem 1.1]. This is the set-up of [3, Theorem 2.1], which shows that the
inequality

(1.1) τ(a) +
∑
∅6=K⊂J

(−1)|K|N(∨K)−β Tr∨Kτ (a) ≥ 0, a ∈ A+, J ⊂ P\{e},

must hold for the restriction τ = φ|A of a KMSβ state φ on NT (X) for every finite J . By
convention, the summands corresponding to ∨K = ∞ are zero. Moreover every tracial state of A
satisfying (1.1) is the restriction of a KMSβ-state φ on NT (X). In general, the restriction map
may not be one to one, but [3, Theorem 5.1] shows that the gauge invariant KMSβ-states are in
affine bijection with the tracial states of A satisfying the positivity condition (1.1).

Inequalities of the form (1.1) are often referred to as subinvariance conditions and have appeared
before in the study of KMS states: the case of a single correspondence X requires one inequality
[17, Theorem 2.1]; the case of a product system arising from finitely many ∗-commuting local
homeomorphisms of a compact space involves finitely many inequalities [1, Proposition 4.1].

In principle, by [3, Theorem 5.1], the gauge-invariant KMSβ-states of the dynamics on NT (X)
arising from a homomorphism N can be determined by finding all the traces on A that satisfy
the positivity condition. Needless to say, this procedure may be unmanageable in practice, so it
becomes important to identify cases in which a smaller system of inequalities suffices.

Such a simplification was obtained in [3, Theorem 9.1] for the case in which P is a right-angled
Artin monoid A+

M . Specifically, denoting the set of canonical generators of A+
M by S, in this case

the positivity condition (1.1) is equivalent to

(1.2) τ(a) +
∑
∅6=K⊂J
K∈cl(S)

(−1)|K|N(∨K)−β Tr∨Kτ (a) ≥ 0 for all finite J ⊂ S and a ∈ A+,

where the sum is over the collection cl(S) of cliques of S, namely the collection of subsets of S that
have an upper bound in P . We refer to such a result as reduction of the positivity condition (1.1)
to atoms. Our main results are various reductions of the positivity condition to smaller systems of
inequalities valid for several classes of monoids P .

As for our context, we begin by considering general right LCM monoids, which are the left
cancellative monoids that have least common upper bounds and may contain nontrivial invert-
ible elements. For some results we focus on the more restrictive class of group embeddable right
LCM monoids that have no invertible elements other than the identity; these are known as weak
quasi-lattice ordered monoids [2, Definition 2.1]. In most situations we will also assume P to be
Noetherian; this is a suitable assumption that ensures the existence of a set of atoms which, together
with the invertible elements, generate the monoid. It is known, for example, that the existence
of a length function implies Noetherianity. Our main applications and most definite results are
for finite-type Artin monoids, for which we answer in the positive, the question of reduction of
positivity to generators raised in [3].

The paper is organised as follows. In Section 2 we review briefly the necessary background on
monoids. The main results of Section 3 are the generalisations of Theorem 2.1 and Theorem 5.1 of
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[3] to the Nica-Toeplitz algebra NT (X) of a compactly aligned product system X = (Xp)p∈P over a
right LCM monoid P . This is fairly straightforward, except for the need to upgrade several results
about inducing in stages for product systems over Noetherian monoids P that have nontrivial
invertible elements. This widens the range of applications and may be of independent interest.
Since we do not assume the existence of an ambient group, we also propose a natural notion of
gauge-invariance for KMS states on NT (X). The key is to use certain conditional expectations
that were implicit in [15] and [16] to replace the conditional expectations of the dual coactions that
exist only when P embeds in a group.

In Section 4, motivated by [20], we construct a tree by an induction procedure that provides a
recursion formula to keep track of how the positivity condition for a given level depends on the
next level, Proposition 4.7. Our first main result is Theorem 4.8 where we show that reduction of
positivity holds whenever the tree is finite. As applications we prove reduction results for finite-
type Artin monoids, Corollary 4.11, and we also recover in Proposition 4.12 the reduction result
for right-angled Artin monoids, which was proved by different means in [3, Theorem 9.1]. Further,
Corollary 4.9 spells out the main practical method to find KMS states by verifying positivity on
suitable finite subsets of P .

In Section 5 we take a different approach to reduction of the positivity condition. More precisely,
we combine the technique from [3] for proving reduction for right-angled Artin monoids with a
minimal set introduced by Boyu Li in [20]. This minimal set is the smallest subset of P that
contains the atoms and is closed under taking left divisors of least upper bounds. The key step,
Lemma 5.4, is to show that a certain algebra of subsets of P can be constructed from ideals
pP ⊂ P with p in the minimal set. Our second main result is Theorem 5.5, which shows that for all
Noetherian weak quasi-lattice orders there is a reduction of positivity to a subsystem of inequalities
corresponding to the minimal subset.

In Section 6 we specialise to product systems with one-dimensional fibres, that is, Xp = C for all
p ∈ P , and we illustrate, for the C∗-algebras of Artin braid monoids B+

n for n ≥ 3, the technique
of finding KMS states by solving the system of equations (explicitly for n = 4).

Finally, in Section 7 we refine the search of a suitable algebra of subsets of P for which reduction
of positivity holds by going all the way down to the set of atoms inside the minimal subset of P .
Theorem 7.1 formalises the result, and its main application, Corollary 7.10, provides a reduction
of the positivity condition to atoms for a class of Artin monoids, obtained through free and direct
products, which properly contains the finite-type and the right-angled ones. Explicit examples are
given in Proposition 7.7. It remains an open question whether reduction of positivity to atoms
holds for all Artin monoids.

2. Background

2.1. Semigroups, conditional right LCMs, and noetherianity. All semigroups in this paper
have an identity, denoted e, and thus are monoids. We concentrate our attention on left cancellative
monoids that admit a partial order under which conditional right least common multiples exist,
also referred to as right LCM monoids. These objects fall under a broader class of monoids, and
we refer to the monograph [11] as reference.

For p, q in a monoid P we say that q is a right multiple of p, written p ≤ q, provided that there
is q′ ∈ P such that pq′ = q. Equivalently, q ∈ pP . A further equivalent formulation is that p is a
left divisor of q. The set of left-divisors of q will be denoted Divl(q). The relation ≤ is an order
when P is left cancellative with no non-trivial invertible elements. There are obvious definitions of
the symmetric notions of left multiple (right divisor). The invertible elements in P form a group
P ∗, possibly the trivial group {e}.
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Definition 2.1. [11, Definition 2.9] Let P be a left-cancellative monoid and let U be a subset of
P . The element r of P is a least common right multiple, or right LCM, of U if r is a right multiple
of each element of U and every element r′ of P that is a right multiple of each element of U is a
right multiple of r.

A subset U of P that admits a right LCM r ∈ P is called a clique in P . We denote a right LCM
of U by ∨U and note that (∨U)u is a right LCM of U for every u ∈ P ∗. If U is a clique consisting
of two elements p and q, we write p ∨ q for a right LCM of {p, q}. We write ∨U =∞ when U has
no right LCM. By convention, the empty set is a clique. Obviously, every one-element subset of P
is a clique. For a subset J ⊂ P we denote the collection of cliques U of J by cl(J).

Note that the operation ∨ is associative on P (since P is left-cancellative), a fact which will be
used tacitly throughout.

We recall now an important class of monoids: in [11], their defining property is called existence
of conditional right LCM’s. Right-cancellative monoids that admit conditional lcm’s with respect
to left multiples have been studied in e.g. [19].

Definition 2.2. A left-cancellative monoid P with the property that every two elements p and q
that admit a common right multiple admit a right LCM will be called a right LCM monoid.

A monoid P is left-Noetherian (respectively right-Noetherian, respectively Noetherian) provided
that there exists no infinite descending sequence in P with respect to proper left-divisibility (re-
spectively proper right-divisibility, respectively proper factor relation). By [11, Proposition II.2.29],
a left-cancellative monoid is Noetherian if and only if it is both right- and left-Noetherian.

If P is a left-cancellative monoid that is right-Noetherian, and if q ∈ P , then every sequence in
Divl(q) of the form p1, p1p2, p1p2p3, . . . with pn non-invertible is necessarily finite, cf. [11, Proposi-
tion II.2.28] (i.e. The divisors of q have no infinite increasing sequences.) An analogous argument
shows that if P is also right-cancellative and left-Noetherian, then for each q ∈ P , any sequence
of the form r1, r2r1, r3r2r1, . . . with rn non-invertible (i.e. an increasing sequence with respect to
right-divisibility) in the set Divr(q) of right-divisors of q is finite.

An atom in a monoid P is an element s ∈ P \ P ∗ such that every decomposition of s as a finite
product of elements in P contains at most one element in P \ P ∗, see [11, Ch. II, Definition 2.52].
We denote the set of atoms in P by Pa.

It is proved in [11, Corollary II.2.59] that in a Noetherian left-cancellative monoid P that contains
no non-trivial invertible elements, the set of atoms Pa is the smallest subset generating P . In an
arbitrary left-cancellative Noetherian monoid, a generating set Pgen is any subfamily that generates
P ∗ and contains at least one element in each equivalence class of atoms for the relation ∼ with
s ∼ s′ if and only if s′ = su for u ∈ P ∗, [11, Proposition 2.58].

We recall from [22], see also [9] that a discrete group G and a subsemigroup P so that P ∩P−1 =
{e} form a quasi-lattice ordered pair for the partial order x ≤ y ⇔ x−1y ∈ P , with x, y ∈ G, if the
following two conditions hold:

(QL1) For all p, q ∈ P such that (pq−1)P ∩ P 6= ∅ there is (a necessarily unique) r ∈ P so that
(pq−1)P ∩ P = rP , and

(QL2) Given any pair p, q ∈ P so that pP ∩ qP 6= ∅ there is (a necessarily unique) element p ∨ q
in P , their least common upper bound, so that pP ∩ qP = (p ∨ q)P .

A discrete group G and a subsemigroup P so that P ∩P−1 = {e} form a weak quasi-lattice ordered
pair if condition (QL2) alone is satisfied.

2.2. Artin monoids. We now recall some basic facts about Artin monoids. A Coxeter matrix over
a set S is a matrix M = (mst)s,t∈S such that mst = mts ∈ {2, . . . ,∞} for all s 6= t and mss = 1 for
all s, t ∈ S, with the convention that M may be an infinite matrix. The Artin group AM associated
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to M is the group with generating set S and presentation

{S | 〈st〉mst = 〈ts〉mts for all s, t ∈ S},

where 〈st〉mst = sts . . . is the alternating product of length mst; notice that the last letter of 〈st〉mst
is t when mst is even and s when mst is odd. The Artin monoid A+

M is the monoid with the same
presentation. As a consequence of [4, Verkürzungslemma], every Artin monoid admits conditional
right LCM’s and the explicit formula for the least common upper bound of two generators is given
by the obvious guess.

Lemma 2.3. Every Artin monoid A+
M embeds in the corresponding Artin group AM , and the pair

(AM , A
+
M ) is weak quasi-lattice ordered. If s and t are generators, then s ∨ t = 〈st〉ms,t = 〈ts〉mt,s

for all s, t ∈ S with ms,t = mt,s <∞.

Proof. The general embedding result is from [24], although various special cases had been known
previously. That the pair is weak quasi-lattice ordered is a consequence of [4, Verkürzungslemma].
For the last assertion, it is clear that 〈st〉ms,t = 〈ts〉mt,s is an upper bound for both s and t in S.
Suppose x ∈ P is an arbitrary upper bound for s and t, that is, there exist p, q ∈ P such that
x = sp = tq. By [4, Verkürzungslemma], there exists a positive word w such that p = 〈ts〉ms,t−1w
and q = 〈st〉mt,s−1w. Hence x = sp = 〈st〉ms,tw, and hence 〈st〉ms,t ≤ x. Since x is arbitrary we
can conclude that s ∨ t = 〈st〉ms,t = 〈ts〉mts . �

There are two particularly well understood classes of Artin groups and monoids: Right-angled
Artin groups, where mij ∈ {2,∞} for all i 6= j in Λ, and finite-type Artin groups, which are those
for which the corresponding Coxeter group, which is the group obtained by adding the relations
s2i = e to those of AM , is finite, from this it follows that their Coxeter matrix is finite and that it
contains no infinities. Both form quasi-lattice ordered pairs, cf. [4] and [9].

Remark 2.4. Since Coxeter matrices are symmetric, the relations defining Artin monoids are
homogeneous, in the sense that they preserve the total number of generators in a word. This
implies that the usual length function on the free monoid factors through Artin monoids. As a
consequence, all Artin monoids are Noetherian.

2.3. An algebra of subsets of P . Suppose that P is a right LCM monoid. For each p ∈ P , let
1pP denote the characteristic function of the set {q ∈ P : p ≤ q}. Then BP = span{1pP : p ∈ P} is
a commutative C∗-subalgebra of l∞(P ), see [16, Section 2] for further properties.

Following [3, Section 2] we denote by BP the algebra of subsets of P generated by the sets pP
for p ∈ P ; by an algebra we mean a nonempty collection of subsets of P that is closed under
taking complements and finite unions. Then the set of projections in BP is precisely the set of
characteristic functions of the elements of BP . For easy reference we state a version of [3, Lemma
2.4] valid for right LCM monoids.

Lemma 2.5. (cf. [3, Lemma 2.4]) For each finite subset J of P let

(2.1) ΩJ :=
⋂
q∈J

(P \ qP ),

where by convention Ω∅ = P and ΩJ = ∅ whenever J ∩ P ∗ 6= ∅. Then every set BP is a finite
disjoint union of sets of the form pΩJ , where p ∈ P and J ⊂ P is a finite set.

In the reduction of the positivity condition to generators proved in [3, Theorem 9.1] in the case
of right-angled Artin monoids, the key ingredient is that to generate BP it suffices to take subsets
J ⊂ S of generators, see [3, Lemma 9.3].
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3. Product systems over right LCM monoids

Suppose that P is a left cancellative monoid. The notion of a product system X over P of
C∗-correspondences was introduced in [12]. In particular, [12] identified the important class of
Nica-Toeplitz covariant representations of a compactly aligned product system X over a monoid P
in a quasi-lattice ordered pair (G,P ).

The analysis of KMS states for time evolutions on Nica-Toeplitz C∗-algebras of compactly aligned
product systems over positive cones of quasi-lattice ordered groups was carried out in [3]. One of our
aims here is to extend this analysis to product systems over the positive cones of weak quasi-lattice
ordered groups, and, more generally, over right LCM monoids. Another more specific aim is to show
that the reduction of the characterisation of KMS states to generators holds in other cases as well,
notably for finite-type Artin monoids. We begin by briefly recalling some necessary background.
For a comprehensive discussion of product systems of C∗-correspondences see [12, 28, 7] in the
quasi-lattice ordered case and the generalisation [5, 16] to the right LCM case.

Suppose that P is a (countable) cancellative semigroup with identity e and A a C∗-algebra. Let X
be a right C∗-Hilbert A-module. We denote the adjointable operators on X by L(X) with identity
IX . A C∗-correspondence X over A is a right C∗-Hilbert A-module equipped with a left action
given by a ∗-homomorphism ϕ : A → L(X). The correspondence is essential if ϕ(A)(X) = X.
A collection (Xp)p∈P of C∗-correspondences over A is a product system, cf. [12], if the following
properties are satisfied:

(i)
⋃
p∈P Xp has a monoid structure such that for any ξ ∈ Xp and ζ ∈ Xq we have ξζ ∈ Xpq

and the map ξ ⊗ ζ 7→ ξζ extends to an isometric isomorphism Xp ⊗A Xq ' Xpq for all
p, q ∈ P with p 6= e.

(ii) Xe is the canonical correspondence AAA and the product maps Xe ×Xp → Xp and Xp ×
Xe → Xp coincide with the structure maps of the A-bimodules Xp for all p ∈ P .

3.1. The Nica-Toeplitz C∗-algebra of X. A universal C∗-algebra T (X) is associated to a prod-
uct system X via representations ψ of X. We refer to [12] for the definition of an arbitrary
representation ψ : X → B with B a C∗-algebra. Next we recall in some detail the notion of Nica
covariant representation of X, under further assumptions on P and X.

Suppose that P is a right LCM monoid and X is a product system over P of C∗-correspondences
over a C∗-algebra A such that Xp is essential for every p ∈ P . Note that if P ∗ 6= {e} then X will
automatically have essential fibres, cf. [16, Remark 1.3]. The requirement of essential fibres is not
needed to define Nica covariant representations and the universal C∗-algebra NT (X), but is useful
when we also bring into the discussion the reduced Nica-Toeplitz C∗-algebra NT r(X), cf. also [3].

Let Ip denote the identity operator in L(Xp) for every p ∈ P . If p, r ∈ P with p ≤ r, then there is
a natural ∗-homomorphism ιrp : L(Xp)→ L(Xr) obtained by identifying Xr with Xp ⊗A Xp−1r and
mapping S ∈ L(Xp) into S ⊗ Ip−1r. Let K(Xp) denote the ideal of generalised compact operators
in L(Xp) for each p. We say that X is compactly aligned if for all p, q, r ∈ P with pP ∩ qP = rP
we have that

ιrp(K(Xp))ι
r
q(K(Xq)) ⊂ K(Xr);

no condition is imposed when pP ∩ qP = ∅. We define elements θξ,ζ ∈ K(Xp) by θξ,ζη = ξ〈ζ, η〉, for

ξ, ζ, η ∈ Xp. Given a representation ψ of X into B, there are ∗-homomorphisms ψ(p) : K(Xp)→ B

given by ψ(p)(θξ,ζ) = ψp(ξ)ψp(ζ)∗ for each p ∈ P . A representation ψ is Nica covariant if

ψ(p)(S)ψ(q)(T ) =

{
ψ(r)

(
ιrp(S)ιrq(T )

)
if pP ∩ qP = rP

0 otherwise
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for all S ∈ K(Xp) and T ∈ K(Xq). We refer to [5, Section 6] and [16, Lemma 2.4] for further details.
By definition, the Nica-Toeplitz algebra of X is the C∗-algebra NT (X) generated by a universal
Nica covariant representation iX : X → NT (X).

Following [3], for each multiplicative semigroup homomorphism N : P → (0,∞) we will consider
the time evolution σ on NT (X) such that σt(iX(ξp)) = N(p)itiX(ξp) for ξp ∈ Xp and t ∈ R. We
will need to assume throughout that N is trivial on P ∗, that is, Nu = 1 for every u ∈ P ∗; this is
automatic if the range of N is contained in [1,∞). Recall that a state φ of NT (X) is a KMS state
at inverse temperature β (a KMSβ state) provided that

φ(xy) = φ(yσiβ(x))

for all x, y with x analytic with respect to σ, that is to say, t 7→ σt(x) extends to a C*-algebra-
valued entire function. Since in the present case it suffices to consider the σ-invariant set of analytic
elements iX(ξp)iX(ηq)

∗ with ξp ∈ Xp and ηq ∈ Xq because it has a dense linear span (it suffices
to know that iX(ξ) generate NT (X) as a C∗-algebra, see [3, Lemma 1.9]), we will see below that
KMSβ states of (NT (X), σ) are characterized by the condition

φ(iX(ξp)iX(ηq)
∗) = δp,qN

−β Trpτ (θηq ,ξp), ξp ∈ Xp, ηq ∈ Xq,

involving the induced trace of the tracial state τ := φ|A.

3.2. Inducing traces via C∗-correspondences. We recall from [25, Sections 5.1 and 5.2] that
a weight ψ on a C∗-algebra A is a map ψ : A+ → [0,∞] that satisfies positive homogeneity:
ψ(αa) = αψ(a) for all α ∈ R+ and a ∈ A+, and additivity: ψ(a + b) = ψ(a) + ψ(b) for all
a, b ∈ A+. The weight ψ is lower semicontinous if {a | ψ(a) ≤ c} is closed for all c ∈ R+. With

Aψ+ := {a ∈ A+ | ψ(a) < ∞}, the space Aψ = spanAψ+ is a hereditary C∗-algebra of A on which
ψ admits a unique extension as a positive linear functional, still denoted ψ. If the weight ψ is
invariant under conjugation by unitary elements in the unitisation Ã, we say that it is a trace, in

which case Aψ is an ideal of A. Moreover, if ψ is a finite trace, meaning that Aψ+ = A+, then
ψ(ab) = ψ(ba) for all a, b ∈ A.

Suppose that X is a C∗-correspondence over A and τ a tracial positive linear functional on A.
We recall from [17, Theorem 1.1] that the induced trace TrXτ is defined for T ∈ L(X), T ≥ 0 by

(3.1) TrXτ (T ) = sup
H⊂X

∑
ξ∈H

τ(〈ξ, T ξ〉),

where the supremum is taken over all finite subsets H ⊂ X such that
∑

ξ∈H θξ,ξ ≤ 1. Then TrXτ is
strictly lower semicontinuous and satisfies

TrXτ (T ) = lim
k

∑
ξ∈Hk

τ(〈ξ, T ξ〉) for all T ∈ L(X)+.

whenever Hk is a generalized sequence of finite sets in X such that {
∑

ξ∈Hk θξ,ξ}k is an approximate

unit in K(X), moreover, TrXτ extends to a positive semifinite trace on L(X).
We are interested in the restriction of TrXτ to the image of A inside L(X) given by the left action.

Recall from [17] that for each C∗-correspondenceX over A there is an operator FX mapping a tracial
positive linear functional τ on A to a possibly infinite positive trace FXτ on A defined by

(FXτ)(a) = TrXτ (a)

for a ∈ A+. Given a product system {Xp}p∈P of essential C∗-correspondences over P , we follow [3,

Section 1.4] and write Fp instead of FXp and Trpτ instead of Tr
Xp
τ for all p ∈ P . Let ϕp be the left

action on Xp and recall that if (Trqτ ◦ϕp)|A is a finite positive trace on A for some q ∈ P , then we
7



can use induction in stages [17, Proposition 1.2] and factor Fpq(τ) as Fp(Fq(τ)) for all p ∈ P . In
other words, for r = pq so that Fq(τ) = Trqτ |A+ is finite we have

(3.2) Trrτ (a) = TrpFq(τ)(a) for a ∈ A+.

In general, the induced trace Trqτ , or rather Trqτ ◦ϕp, need not be a finite trace on A. However,
we recall from [3] that if τ satisfies condition (1.1) with J = {q}, then

Trqτ (a) ≤ τ(a)N(q)β <∞ for all a ∈ A+.(3.3)

In particular, Trqτ is a finite trace on A whenever τ is the restriction of a KMSβ-state.

3.3. A characterisation of KMS states on NT (X). We will now extend [3, Theorem 2.1] to
the case of Nica-Toeplitz algebras NT (X) where X is a product system over a right LCM monoid.
Before we can state the generalisation we need some preparation about induced traces for product
systems over monoids that have nontrivial invertible elements.

Suppose that X is a product system over a right LCM monoid P with Xe = A. Recall that ϕp
is the left action in Xp and Ip the identity operator in L(Xp), for all p ∈ P . As observed in [5], for
each u ∈ P ∗ the map T 7→ T ⊗ Iu−1 is an adjunction from Xu to Xu−1 in the sense of [8, Definition
2.17], meaning that it induces a natural isomorphism

L(Z ⊗A Xu, Y )→ L(Z, Y ⊗A Xu−1)

for any Hilbert A-modules Y, Z. One consequence is that by [14, Theorems 4.4(2) and 4.13], see
also [8, Theorem 2.24], it necessarily must hold that ϕu(a) ⊆ K(Xu) for u ∈ P ∗ and a ∈ A+.
A second consequence of the existence of this adjunction is that its restriction to the generalised
compact operators is an isomorphism

K(Z ⊗A Xu, Y )→ K(Z, Y ⊗A Xu−1),

cf. [8, Corollary 3.9], in other words it yields a local adjunction, for all u ∈ P ∗. As in [8], we denote
elements in Xu−1 by ξ∗, where ξ runs over Xu (in the terminology of [8], the C∗-correspondence
Xu−1 is the conjugate of Xu). It follows from [8, Corollary 3.31] that A admits a direct sum
decomposition

A = Au−1 ⊕A⊥u−1

into two-sided ideals Au−1 = span{〈ξ∗1 , ξ∗2〉 | ξ∗1 , ξ∗2 ∈ Xu−1} and A⊥u−1 = ker(ϕu). In particular, we
have that ϕu(A) = ϕu(Au−1).

We now let Fp,q : Xp⊗AXq → Xpq denote the subordinate isomorphisms of C∗-correspondences
for p, q ∈ P . Note that for each u ∈ P ∗, the map

F−1
u,u−1 : Xe → Xu ⊗A Xu−1

is adjointable with adjoint Fu,u−1 , and satisfies the properties of being a unit for the adjunction

corresponding to tensoring by Xu and Xu−1 . By uniqueness of the unit, the map F−1
u,u−1 is the

adjoint of the map δ from [8, Lemma 3.18], hence it corresponds to the left action ϕu through a
canonical isomorphism of Xu⊗AXu−1 onto K(Xu) identifying ξ1⊗ξ∗2 with θξ1,ξ2 , where ξ1, ξ2 ∈ Xu,
[8, Proposition 3.29]. Moreover, Fu,u−1 can be identified with the map δ, so

Fu,u−1(ξ1 ⊗ ξ∗2) = 〈ξ∗1 , ξ∗2〉 for ξ∗1 , ξ
∗
2 ∈ Xu−1 .

For the same reason, the map F−1
u−1,u

: Xe → Xu−1 ⊗A Xu must coincide with ε from [8, Lemma

3.18], so it corresponds to the left action ϕu−1 upon canonical identification of ξ∗1 ⊗ ξ2 with θξ∗1 ,ξ∗2 ∈
K(Xu−1), [8, Proposition 3.32]. Further,

Fu−1,u(ξ∗1 ⊗ ξ2) = 〈ξ1, ξ2〉 for ξ1, ξ2 ∈ Xu.
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Since F−1
u−1,u

◦ Fu,u−1 : Xu ⊗A Xu−1 → Xu−1 ⊗A Xu maps ξ ⊗ ξ∗ to ξ∗ ⊗ ξ, where ξ ∈ Xu, it follows

that

(3.4) 〈ξ∗, ξ∗〉 = 〈ξ, ξ〉 for all ξ ∈ Xu.

Lemma 3.1. Suppose that X = {Xp}p∈P is a product system of C∗-correspondences over a right
LCM monoid P with Xe = A. Suppose that τ is a tracial state on A. Then the trace on A defined
as TrXuτ (ϕu(a)) for u ∈ P ∗, a ∈ A+ coincides with τ . In particular, for every p ∈ P and all a ∈ A+

we have that
Tr

Xpu
τ (ϕpu(a)) = Tr

Xp
τ (ϕp(a)) = Tr

Xup
τ (ϕup(a)).

Proof. We recall that TrYτ (ϕ(a)) is defined in [17, Proposition 1.2] for an arbitrary C∗-correspondence
Y over A. Given u ∈ P ∗, let (eJ)J with eJ ≤ Iu be an approximate unit for K(Xu) where
eJ =

∑
η∈J θη,η. Let a = 〈ξ∗, ξ∗〉 ∈ A+ for ξ ∈ Xu. We have that

TrXuτ (ϕu(a)) = supJ
∑
η∈J

τ(〈η, ϕu(a)η〉)

= supJ
∑
η∈J

τ(〈η, 〈ξ∗, ξ∗〉η〉)

= supJ
∑
η∈J

τ(〈η, θξ,ξη〉)

= supJ
∑
η∈J

τ(〈η, ξ〉〈ξ, η〉)

= supJ
∑
η∈J

τ(〈ξ, η〉〈η, ξ〉) since τ is a trace

= supJ
∑
η∈J

τ(〈ξ, θη,ηξ〉)

= τ(〈ξ, ξ〉) since eJ is an approximate unit

= τ(a)

by the assumption on (eJ) and (3.4). By linearity and continuity we have that TrXuτ (ϕu(a)) = τ(a)
for all a ∈ A+. The displayed equalities follow by two applications of [17, Proposition 1.2], namely
by letting q ∈ P ∗ and, respectively, p ∈ P ∗ in equation (3.2). �

Lemma 3.2. Let P be a Noetherian right LCM monoid, {Xp}p∈P a compactly aligned product
system of essential C∗-correspondences over P with Xe = A, N : P → (0,∞) a multiplicative
homomorphism, τ a finite positive trace on A and β ∈ R.

(i) Suppose that Trsτ (a) ≤ N(s)βτ(a) for all s ∈ Pa, a ∈ A+. Then Trpτ (a) ≤ N(p)βτ(a) for all
p ∈ P and a ∈ A+. In particular Trpτ |A is a tracial linear functional on A for every p.

(ii) Suppose that Trpτ |A is finite for every p ∈ P and for each finite subset U of P with ∨U <∞
set τU = Tr∨Uτ |A. Then TrpτU (a) <∞ for all p ∈ P and a ∈ A+.

Proof. Let N0(p) = N(p)β for all ∈ P . Assume the hypothesis of (i) and let p ∈ P . If p ∈ P ∗, then
Trpτ (a) = τ(a) = N0(p)τ(a) for all a ∈ A+ by Lemma 3.1. If p ∈ P \ P ∗, then the element p can
be expressed as a product of the form p = gs1g1s2g2 . . . sngn, for some n ≥ 1, with sj ∈ Pa and
g, gj in a generating set for P ∗ (which we assume contains the identity) for each j = 1, . . . , n, see
Section 2. We will prove the claim by induction on the number of atoms in the expression of p.

Let first p = gs1g1 where s1 ∈ Pa and g, g1 ∈ P ∗. Then for a ∈ A+ we have

Trpτ (a) = Trs1τ (a) ≤ N0(s1)τ(a) = N0(p)τ(a)
9



by Lemma 3.1 and our hypothesis
Assume now that Trpτ |A ≤ N0(p)τ for all p ∈ P that can be expressed as a product of generators

containing n atoms, for n ≥ 2. Let q ∈ P be of the form q = gs1g1s2g2 . . . sngnsn+1gn+1, with
sj ∈ Pa and g, gj in a generating set for P ∗ for j = 1, . . . , n + 1. Set p = g1s2g2 . . . sngnsn+1gn+1,
so that q = gs1p.

By the inductive hypothesis applied to p, τ0 = Trpτ |A is a finite trace on A. Then, applying
Lemma 3.1, equation (3.2), the inductive hypothesis on p and our hypothesis on s1, we get that

Trqτ (a) = Trgs1pτ (a) = Trs1τ0(a) = sup
F

∑
ξ∈F

τ0(〈ξ, aξ〉)

≤ sup
F

∑
ξ∈F

N0(p)τ(〈ξ, aξ〉)

= N0(p) Trs1τ (a) ≤ N0(p)N0(s1)τ(a)

= N0(q)(a)

for all a ∈ A+, where F are finite subsets of Xs1 . We can conclude that Trqτ (a) ≤ N0(q)τ(a) < ∞
for all a ∈ A+ and all q ∈ P . This shows (i).
For (ii), fix a finite subset U ⊂ P with ∨U <∞. We have that τU = Tr∨Uτ is a finite trace on A by
assumption. Then

TrpτU (a) = Trp(∨U)
τ (a) <∞

for all a ∈ A+ and p ∈ P follows by [17, Proposition 1.2], see equation (3.2). �

We shall need generalisations of [3, Theorem 2.1] and [3, Theorem 5.1] valid for right LCM
monoids.

Theorem 3.3. (cf. [3, Theorem 2.1]) Assume that P is a right LCM monoid and X = {Xp}p∈P is
a compactly aligned product system of essential C∗-correspondences over P with Xe = A. Consider
the time evolution on NT (X) defined by a homomorphism N : P → (0,∞), and assume φ is a
KMSβ-state on NT (X) for some β ∈ R. Then τ = φ|A is a tracial state on A satisfying condition
(1.1) for all finite J ⊂ P\{e} and a ∈ A+.

Proof. The argument follows the one from [3]. Let (π,H, ξ) be the Hilbert space of the GNS
representation of NT (X) from φ. There are two main points where we need an extension to the
right LCM case. First, we need to know that

N(pu)−β Tr
Xpu
τ (ϕpu(a)) = N(p)−β Tr

Xp
τ (ϕp(a))

for all p ∈ P, u ∈ P ∗ and a ∈ A. Since N(u) = 1 because N is a homomorphism, this claim follows
directly from Lemma 3.1.

Second, we need an analogue of the projections fp, p ∈ P from [3]. For each p ∈ P , let 1pP
denote the characteristic function of the set {q ∈ P : p ≤ q}. Then BP = span{1pP : p ∈ P} is
a commutative C∗-subalgebra of l∞(P ). Furthermore, just as in the case of quasi-lattice ordered
pairs cf [3, Section 2], the set {1pP | p ∈ P} is linearly independent.

Since the representation π : NT (X) → B(H) corresponds to a Nica covariant representation

ψ : X → B(H) through ψ = π ◦ iX , we let αψp (1) be the projection in ψe(A)′ ⊂ B(H) from [12,
Proposition 4.1] (which is the case of quasi-lattice orders, see [16, Lemma 2.28] for the right LCM

case). We have that αψp (1)αψq (1) = αψr (1) whenever pP ∩ qP = rP and αψp (1)αψq (1) = 0 when p and
q do not admit a common right multiple, see [15, Proposition 9.5 and Lemma 9.3] in connection with
[16, Lemma 2.4]. By [16, Proposition 2.30], there is a representation Lπ of BP on H determined by

Lπ(1pP ) = αψp (1). In particular, αψp (1) is the strong limit of π(i
(p)
X (uj)) for every approximate unit
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(uj)j in K(Xp). Thus with projections αψp (1) instead of fp, for p ∈ P , the proof of [1, Theorem 2.1]
can be adapted verbatim to the case when P is right LCM. �

3.4. Gauge-invariant KMS states. It is natural to ask if the necessary condition (1.1) describing
a KMS state is also sufficient for its existence. A positive answer is given in [3, Theorem 5.1], as
we now briefly recall. Suppose that X is a compactly aligned product system X over a monoid P
in a quasi-lattice ordered pair (G,P ). Then there exists a canonical coaction δG of G on NT (X)
that yields a grading into a family of subspaces NT (X)g for g ∈ G, cf. [7, Proposition 3.5]. A
state φ on NT (X) is gauge-invariant if it vanishes on all NT (X)g where g 6= e, in other words
if φ factors through the conditional expectation arising from δG, which maps NT (X) onto its
core subalgebra. Then the map φ 7→ φ|A defines a one-to-one correspondence between the gauge-
invariant KMSβ-states on NT (X) and the tracial states on A satisfying (1.1), cf. [3, Theorem
5.1].

In order to extend this result to the case of product systems over right LCM monoids, the
immediate question arises as to what should gauge-invariance mean in the absence of an ambient
group containing the given monoid. The answer we suggest is that the state should factor through
a canonical conditional expectation E of NT (X), similar to the case of a quasi-lattice ordered
pair (G,P ). The reason for this is that the Fock module

⊕
p∈P Xp induces a grading of P on the

reduced Nica-Toeplitz algebra NT r(X), and this grading alone suffices to give rise to the desired
conditional expectation on NT (X). We next recall this construction, see [15, 16].

Given a compactly aligned product system of (essential) C∗-correspondences over a right LCM
monoid P , there is a natural Nica covariant representation l of X on

⊕
p∈P Xp, the Fock represen-

tation. For the sake of clarity we use the symbol l for this representation, just as in [12] (but unlike
e.g. [16, 3]), and reserve ` for a length function on a monoid. The C∗-algebra generated by l is
the reduced Nica-Toeplitz algebra NT r(X), and there is a canonical surjective ∗-homomorphism
Λ : NT (X)→ NT r(X), see [16, Section 2].

The next result is implicit in [15], where it is formulated using the C∗-precategory picture of
NT r(X) and NT (X), see [15, Proposition 5.4], respectively [15, Corollary 6.5]. For the sake of
completeness and easy reference we state it in a form suitable to the more familiar picture of
NT r(X) viewed as the closure of the subalgebra spanned by monomials l(ξ)l(η)∗ for ξ ∈ Xp, η ∈
Xq, p, q ∈ P and similarly with NT (X) as the closure of the subalgebra spanned by monomials
iX(ξ)iX(η)∗. Denote by d : X → P the degree homomorphism of monoids so that the fibre over
p ∈ P is Xp = d−1({p}). By definition, the core subalgebra of NT (X) is the fibre over the identity,
namely

BiX
e = span{iX(ξ)iX(η)∗ | ξ, η ∈ X, d(ξ) = d(η)}

and Bl
e of NT r(X) as

Bl
e = span{l(ξ)l(η)∗ | ξ, η ∈ X, d(ξ) = d(η)}.

Proposition 3.4. Let X be a compactly aligned product system of essential C∗-correspondences
over a cancellative right LCM monoid P , where Xe = A. Then there is a faithful conditional
expectation Er : NT r(X)→ Bl

e such that

(3.5) Er(
∑
ξ,η∈F

l(ξ)l(η)∗) =
∑

{ξ∈F |d(ξ)=d(η)}

l(ξ)l(η)∗,

where F is a finite subset of X =
⋃
pXp.

Further, there is a conditional expectation E : NT (X)→ BiX
e such that

(3.6) E(
∑
ξ,η∈F

iX(ξ)iX(η)∗) =
∑

{ξ∈F |d(ξ)=d(η)}

iX(ξ)iX(η)∗,
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where F is a finite subset of X =
⋃
pXp.

Proof. A routine calculation shows that the Fock representation l of the product system X and the
Fock representation L of the C∗-precategory associated to X are related in the form

L(Θξ,η) = l(ξ)l(η)∗, ξ ∈ Xp, η ∈ Xq, p, q ∈ P,

where Θξ,η ∈ K(Xq, Xp), as prescribed by [16, Lemma 2.6]. Inserting this in [15, Equation (5.4)]
gives the claim about Er. Using the formula for Er in the proof of [15, Corollary 6.5] gives the
claim about E. �

Theorem 3.5. (cf. [3, Theorem 5.1]) Assume that X = {Xp}p∈P is a compactly aligned product
system of essential C∗-correspondences over a cancellative right LCM monoid P , with Xe = A, and
consider the time evolution on NT (X) defined by a homomorphism N : P → (0,∞). For every
β ∈ R, the map φ 7→ φ|A defines a one-to-one correspondence between KMSβ-states on NT (X)
that factor through the conditional expectation E and the tracial states on A satisfying (1.1).

The proof follows the strategy laid down in [3, Section 5], which in itself follows by now classical
ideas, see for example [23].

Lemma 3.6. Assume the hypotheses of Theorem 3.5. Let τ be a tracial state on A satisfying (1.1).
Then there is a unique state φ0 on BiX

e such that

(3.7) φ0(iX(ξ)iX(η)∗) = N(p)−βτ(〈η, ξ〉) for ξ, η ∈ Xp, p ∈ P.

Proof. To get hold of φ0 we exploit the structure of BiX
e as the norm closure of a nested family

of subalgebras BJ similar to [3, Section 4], see also [7, Lemma 3.6]. More precisely, we recall
that a quasi-lattice I is a partially ordered set such that for all p, q ∈ I, either p, q have a unique
least common upper bound, denoted p ∨ q, or have no common upper bound. The example from
[3, Section 4] is that of a monoid in a quasi-lattice ordered pair. The important observation in
[3, Lemma 4.2] is that the order structure alone, regardless of the monoid structure, allows to

express the core C∗-subalgebra as
⋃
F BF , where F run over the finite ∨-closed subsets of I and

BF = ⊕p∈FBp, with Bp = i
(p)
X (K(Xp)).

In our situation, for a right LCM monoid P we define an equivalence relation by x ∼ y if y = xu
for some invertible u ∈ P ∗ and we denote the equivalence class of p by [p] = pP ∗. The crux of
the matter is that the quasi-lattice graded structure of the core and its dense subalgebra

⋃
F BF

exploited in [3, Lemma 4.2] is inherited by the set P/∼ := {[p] | p ∈ P} of equivalence classes.
Indeed, as noticed in [15, Section 6], the set P/∼ is a quasi-lattice in the sense of [3, Section 4] for

any right LCM monoid P . For each finite ∨-closed subset F̃ of P/∼ we obtain a C∗-subalgebra

BF̃ = span{i(p)X (K(Xp)) | [p] ∈ F̃}

of NT (X), see [15, Lemma 6.6]. The collection of finite ∨-closed1 subsets F̃ of P/∼ forms a directed
set, which we denote F , and we have that

BiX
e =

⋃
F̃∈F

BF̃

by combining observations in the proof of Corollary 6.3 and of Theorem 6.1(b) from [15].
Thus we may carry out the construction of a positive linear functional φ0 given by ⊕[p]∈P/∼φ[p]

as in [3, Proposition 4.4 and section 5]. �

1Note that the definition of ∨-closed subset F ⊂ P/∼ in [15, Section 6.6] ought to be that [p] ∨ [q] ∈ F whenever
[p], [q] ∈ F admit a common upper bound.
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Proof. (Proof of Theorem 3.5). Let φ0 be the state on BiX
e constructed in Lemma 3.6 from a

tracial state τ on A satisfying condition (1.1). We claim that φ := φ0 ◦ E satisfies the KMS
condition, in which case we obtain surjectivity of the mapping in the statement of the theorem.
To show the KMSβ condition, we claim that the calculations in the proof of [3, Theorem 5.1] are
valid using the formula for the expectation E on NT (X) that comes from the Fock space grading,
without reference to an ambient group. Thus, with a = iX(ξ), ξ ∈ Xp and b = iX(ζ)iX(η)∗, for

ζ ∈ Xq, η ∈ Xr, p, q, r ∈ P , we must show that φ(ab) = N(p)−βφ(ba). The case pq = r is verbatim
as in [3], but the case pq 6= r requires some attention as we cannot form elements pq−1r and qr−1p
in the absence of a group.

Assume that pq 6= r. Since ab = iX(ξζ)iX(η)∗, it follows from (3.6) that φ(ab) = 0. Turning to
ba, we rewrite this following the idea of the proof of [15, Proposition 2.10], thus we let η = Rη′ and
ξ = Pξ′ for R ∈ K(Xr), P ∈ K(Xp), η

′ ∈ Xr, ξ
′ ∈ Xp. Then

ba = iX(ζ)iX(η′)∗i
(r)
X (R∗)i

(p)
X (P )iX(ξ′).

By Nica covariance of iX we have that ba = 0 if rP ∩ pP = ∅. Assume therefore that rP ∩ pP 6= ∅.
We have rP ∩ pP = sP with s ∈ P , and we let pp′ = rr′ = s for unique p′, r′ in P . Therefore
ba ∈ iX(Xqr′)iX(Xp′)

∗, and we must prove that qr′ 6= p′, in which case we can conclude that
φ(ba) = 0 by the definition of E. If qr′ = p′, then pqr′ = pp′ = rr′, and right cancellation in P
would give pq = r, a contradiction.

Injectivity of the mapping φ 7→ φ|A follows because the restriction to BiX
e of a KMS state is

determined uniquely by the requirement (3.7). �

4. Reduction of the positivity condition to atoms

Throughout this section we assume that P is a Noetherian left cancellative right LCM monoid,
that {Xp}p∈P is a compactly aligned product system of C∗-correspondences over P with Xe = A,
that N : P → (0,∞) is a multiplicative homomorphism and that β ∈ R. We also assume that τ is
a tracial state of A satisfying the positivity condition for finite subsets of atoms:

(4.1) τ(a) +
∑
∅6=U⊂J

(−1)|U |N(∨U)−β Tr∨Uτ (a) ≥ 0 for a ∈ A+ J ⊂ Pa.

The goal of the section is to show that, under an extra hypothesis on P , the positivity also holds for
all finite subsets of P\{e}, as in (1.1). This gives a version of Theorem 3.5 that is stronger because
it only requires verification of the subcollection of inequalities arising from subsets of atoms, which
is finite if P is finitely generated. We are motivated by the simplification obtained for right-angled
Artin monoids in [3, Theorem 9.1].

The key property we require for the reduction to atoms is the finiteness of a tree that we construct,
largely following the proof of [20, Lemma 4.2]. In the formal arguments we replace finite subsets
J of P by finite lists of elements of P , in which repetitions are allowed. The reason is that even if
the initial list has no repetitions, repetitions may appear already at the second step.

4.1. Positivity for finite lists in P ∪ {∞}. We will use sums over lists of elements in P instead
of subsets of P ., and it is also convenient to allow ∞ in our lists. So for each n ∈ N we consider
the index set In := {1, 2, . . . , n} and define an n-list to be a function of the form λ : In → P ∪{∞}.

Lemma 4.1. Given a tracial state τ on A that satisfies (4.1), a list λ in P ∪ {∞}, and β > 0,
there is a tracial linear functional a 7→ Z(λ, τ, a) defined for each a ∈ A such that

(4.2) Z(λ, τ, a) :=
∑
U⊂In

(−1)|U |N(∨λ(U))−β Tr∨λ(U)
τ (a), a ∈ A,

where we follow the convention that if λ(U) is not a clique, then ∨λ(U) =∞ and N(∨λ(U))−β = 0.
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Proof. When the subset J consists of a single atom, (4.1) is the assumption of Lemma 3.2(i), and

then Lemma 3.2(ii) implies that Tr
∨λ(U)
τ is a tracial linear functional defined on all of A whenever

∨λ(U) ∈ P . When ∨λ(U) = ∞ it is irrelevant that Tr
∨λ(U)
τ (a) is not defined because then the

corresponding coefficient vanishes. Hence Z(λ, τ, a) is well-defined and the function a 7→ Z(λ, τ, a)
is a tracial bounded linear functional on A. �

For each list λ, we let Clλ := {U ⊂ In : λ(U) ∈ Cl(P )} be the collection of cliques in λ, explicitly,
this is the collection of subsets of In on which λ has an upper bound in P . Since the terms associated
to non-cliques vanish, we have

Z(λ, τ, a) =
∑
U∈Clλ

(−1)|U |N(∨λ(U))−β Tr∨λ(U)
τ (a),

where the sums are over over cliques or over lists, indistinctly.
If J ⊂ P is a set with n elements, we replace it by a list λ : In → P with λ(In) = J and write

Z(λ, τ, a) as a sum over subsets of P . Again, the sum only depends on the part of the range of the
list that lies in P , and terms corresponding to non-cliques vanish, that is,

Z(λ, τ, a) =
∑

K⊂λ(I)∩P

(−1)|K|N(∨K)−β Tr∨Kτ (a) =
∑

K∈Cl(λ(I))

(−1)|K|N(∨K)−β Tr∨Kτ (a).

We see next that multiples, repetitions, and invertible elements in a list can be ignored as far as
Z(λ, τ, a) is concerned.

Lemma 4.2. Suppose λ : In → P is a list and assume λ(i) ≤ λ(j) for some i and j with i 6= j.

Denote by λ̂ the list obtained by restricting λ to In \{j}. Then Z(λ, τ, a) = Z(λ̂, τ, a). In particular
if λ(In) ∩ P ∗ 6= ∅, then Z(λ, τ, a) = 0 for all a.

Proof. Suppose λ(i) ≤ λ(j) for i, j ∈ In with i 6= j. The λ-cliques U ⊂ In that contain j fall
into two classes, namely those that contain i and those that do not. The operation of ‘removing i’
establishes a bijection of the first class onto the second one, reducing the cardinality of the clique
by one but leaving the least upper bound unchanged. This changes the sign of the corresponding
summand of Z(λ, τ, a), but not its absolute value, so summands paired this way cancel each other
out.

If we assume now λ(i) ∈ P ∗, then λ(i) ≤ λ(j) for every j ∈ In, and we may remove successively
each λ(j) for j 6= i from λ, finally arriving at Z(λ, τ, a) = Z({i}, τ, a) which is easily seen to be
zero because the only two cliques are ∅ and {i}, which have opposite signs and the same absolute
value τ(a). �

Definition 4.3. A list λ : In → P ∪ {∞} will be called a leaf if either λ(In) ⊂ Pa ∪ {∞} or
λ(In) ∩ P ∗ 6= ∅.

Next we define an iteration step. Let λ be a list in P ∪ {∞}. When λ is not a leaf, let i be
the smallest number in {1, 2, . . . , n} for which λ(i) = pq with p, q ∈ P \ P ∗ (here we may assume
without loss of generality that p is a generator) and define two new lists, λ1 and λ2, in P ∪ {∞} as
follows.

(4.3) λ1(j) :=

{
λ(j) if j 6= i

p if j = i;
λ2(j) :=

{
p−1(p ∨ λ(j)) if p ∨ λ(j) <∞
∞ if p ∨ λ(j) =∞.

In English: the list λ1 is obtained from λ by simply replacing the ith term pq by p and leaving
the rest of the terms unchanged, and the list λ2 is obtained by replacing every term in λ by its
image under the transformation x 7→ p−1(x ∨ p) (here we let p ∨ x be any choice of least common
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upper bound of p and x if there is one and ∞ if there is none). Notice that, in particular, we may
choose λ2(i) = p−1(p ∨ pq) = q.

Clearly λ1(j) = ∞ if and only if λ(j) = ∞, and λ2(j) = ∞ if λ(j) = ∞, but it is certainly
possible to have λ2(j) =∞ with λ(j) <∞.

Lemma 4.4. Let P be a right LCM monoid. Let λ : In → P ∪ {∞} be a list that is not a leaf and
let i ∈ I be the first index such that λ(i) = pq for p ∈ Pa and q ∈ P \P ∗. For each U ⊂ In we have

(1) if λ(U) is a clique, then so is λ1(U), and∨
λ1(U) ≤

∨
λ(U);

(2) λ(U) ∪ {p} is a clique if and only if λ2(U) is a clique, and∨
λ(U) ∨ p = p ·

∨
λ2(U);

(3) when i ∈ U we have that λ1(U) is a clique if and only if λ2(U \ {i}) is a clique, and∨
λ1(U) = p ·

∨
λ2(U \ {i}).

Proof. Suppose λ is not a leaf and λ(i) = pq as in the statement. Part (1) can be split into two
cases. First assume i /∈ U ; then obviously λ(U) = λ1(U), and the claim follows. Next assume
i ∈ U ; then clearly λ(i)P = pqP ⊂ pP = λ1(i)P , and thus

⋂
j∈U λ(j)P ⊂

⋂
j∈U λ1(j)P . This gives

the inequality in part (1). Cliques are preserved because
∨
λ(U) <∞ implies

⋂
j λ1(j)P 6= ∅.

For part (2), notice that

(4.4) p
⋂
j∈U

λ2(j)P =
⋂
j∈U

pλ2(j)P =
⋂
j∈U

(p ∨ λ(j))P =
⋂
j∈U

(pP ∩ λ(j)P ),

Interpreting this for sets of right LCMs, we see that

p ·
∨
λ2(U) =

∨
pλ2(U) = p ∨

∨
λ(U) =

∨
(λ(U) ∪ {p}),

which proves the second assertion.
For part (3), we notice that since λ1(j) = λ(j) for j ∈ U \ {i}, the intersection over U\{i} can

be transformed into one over U ; specifically,

(4.5) p
⋂

j∈U\{i}

λ2(j)P = (
⋂

j∈U\{i}

pλ2(j)P ) ∩ pP =
⋂

j∈U\{i}

(pP ∩ λ(j)P ) ∩ λ1(i)P =
⋂
j∈U

λ1(j)P,

so the sets of right LCMs satisfy

p ·
∨
λ2(U\{i}) =

∨
λ1(U).

That cliques are preserved both ways in cases (2) and (3) is easy to see from (4.4) and (4.5). �

Remark 4.5. In some cases the map λ 7→ λ1 can send an unbounded list to a clique. For an easy
example consider P = F+2 , the free monoid on two generators a and b. Then the list λ = (ab, a2) is
unbounded, but λ1 = (a, a2) is a clique.

The map λ 7→ λ1 does not introduce new invertibles or new infinites. On the other hand, λ 7→ λ2
has the capacity to generate new invertibles and new infinites.

Lemma 4.6. Let X be an essential C∗-correspondence over A. Suppose τ1, . . . , τn are positive
finite traces on A such that TrXτi is finite for each i = 1, . . . , n, and let c1, . . . , cn ∈ R. If

∑n
i=1 ciτi

is positive on A, then so is
∑n

i=1 ci TrXτi (·).
15



Proof. By the linearity properties of the induced trace we have

n∑
i=1

ci TrXτi (a) = TrX∑n
i=1 ciτi

(a) for all a ∈ A+.

The result follows because inducing preserves positivity. �

Proposition 4.7. Suppose P is a Noetherian left cancellative right LCM monoid, that {Xp}p∈P is a
compactly aligned product system of C∗-correspondences over P with Xe = A, that N : P → (0,∞)
is a multiplicative homomorphism and that β ∈ R. Assume that τ is a tracial state of A satisfying
the positivity condition (4.1) for finite subsets of atoms.

If λ, λ1, and λ2 are lists, with λ(i) = pq as in (4.3), then

Z(λ, τ, a) = Z(λ1, τ, a) +
1

N(p)β

∑
U⊂In

(−1)|U |N(∨λ2(U))−β TrpF∨λ2(U)(τ)
(a) for all a ∈ A+.

Proof. Let i ∈ In be given as in (4.3). We compute the difference Z(λ, τ, a) − Z(λ1, τ, a) for
a ∈ A+. Notice that the terms corresponding to each clique U ⊂ In with i /∈ U cancel, because
then λ(U) = λ1(U). So we only need to write terms with i ∈ U ⊂ In. Therefore

Z(λ, τ, a)− Z(λ1, τ, a) =
∑

i∈U⊂In

(−1)|U |
(
N(∨λ(U))−β Tr∨λ(U)

τ (a)−N(∨λ1(U))−β Tr∨λ1(U)
τ (a)

)

Since i ∈ U , so that λ(U) ∪ {p} = λ(U), Lemma 4.4(2) gives N(∨λ(U)) = N(p)N(∨λ2(U)) and
Lemma 4.4(3) gives N(∨λ1(U)) = N(p)N(∨λ2(U \ {i})), so

Z(λ, τ, a)−Z(λ1, τ, a) =
∑

i∈U⊂In

(−1)|U |

N(p)β

(
N(∨λ2(U))−β Tr∨λ(U)

τ (a)−N(∨λ2(U\{i}))−β Tr∨λ1(U)
τ (a)

)
.

When we replace U \{i} by V , which is a set that ranges over the subsets of In \{i}, and we adjust
the sign to take into account that |V | = |U | − 1, we get

Z(λ,τ, a)− Z(λ1, τ, a) =
1

N(p)β

( ∑
i∈U⊂In

(−1)|U |N(∨λ2(U))−β Tr
∨
λ(U)

τ (a)(4.6)

+
∑

i/∈V⊂In

(−1)|V |N(∨λ2(V ))−β Trλ1(i)∨
∨
λ1(V )

τ (a)

)
.

Recall now that by (3.2) we have Tr
∨
λ(U)

τ = TrpF∨λ2(U)(τ)
for each U containing i and Tr

λ1(i)∨
∨
λ(V )

τ =

TrpF∨λ2(V )(τ)
for each V that does not contain i. Thus we may collect the two sums from (4.6) into

the single sum, completing the proof. �

By recursion, the maps λ 7→ λ1 and λ 7→ λ2 generate a binary tree rooted at λ. This is similar
to the proof of [20, Theorem 4.8], but here we use the following tree with nodes indexed by lists,
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λ

λ2

λ22λ21

λ1

λ12λ11

At level k we have nodes indexed by λω, where ω is a word of length k in the free monoid
F+{1, 2} generated by the symbols 1 and 2. The level k+ 1 is generated by splitting each node λω
into two new nodes λω1 := (λω)1 and λω2 := (λω)2 defined according to the recursive step (4.3).
As a matter of notation, whenever ω is a finite or infinite word with entries in {1, 2}, we denote
the initial subword of length k by ω[1, k].

According to Definition 4.3 a node λω is a leaf if λω(j) ∈ P ∗ for some j, or if for every j ∈ In
there is no notrivial factorisation of λω(j). We are interested in a branching process that stops
when Z(λω, τ, a) ≥ 0, and this will be ensured either by the positivity assumption for lists consisting
of atoms and infinities, or by Lemma 4.2 for lists that have an invertible element, because then
Z(λ, τ, a) = 0. Thus we will say that a branch is a finite or infinite word ω on the symbols {1, 2}
that starts at the root λ and either ends at the first node such that λω[1,k] is a leaf, or else does not
end at all, should such a node not exist.

Theorem 4.8. Under the assumptions of Proposition 4.7, suppose that the tree (λω) constructed
above is finite for every list λ. Then reduction of positivity to atoms holds for P . Specifically, a
tracial state τ on A satisfies (1.1) if and only if it satisfies the weaker condition (4.1).

Proof. Suppose that τ is a tracial state of A that satisfies the positivity condition (4.1) for subsets
of atoms. Let J be a subset of P and take a list λ with range J . The left hand side of (1.1) then
equals Z(λ, τ, a) so it suffices to show that Z(λ, τ, a) ≥ 0 for every a ∈ A+.

Assume that λ is a list in P such that the positivity condition (1.1) holds for both λ1 and λ2 for
every a ∈ A. Notice that

Z(λ2, τ, ·) =
∑
U⊂In

(−1)|U |N(∨λ2(U))−β Tr∨λ2(U)
τ =

∑
U⊂In

(−1)|U |N(∨λ2(U))−β(F∨λ2(U)τ)

is a linear combination of the finite positive traces F∨λ2(U)τ . Since Z(λ2, τ, ·) ≥ 0 by assumption,

Lemma 4.6 implies that 1
N(p)β

∑
U⊂In(−1)|U |N(∨λ2(U))−β TrpF∨λ2(U)(τ)

(a) ≥ 0, and then Proposi-

tion 4.7 shows that positivity holds for λ.
Hence, when positivity fails for a list λ, then it must also fail for either λ1 or λ2, and iteration

of this process, say, choosing the first edge whenever positivity fails for both, generates a branch
of the tree of λ such that positivity fails at every node. Since the tree of λ is finite by assumption,
this branch must end at a leaf, on which positivity also fails. But this is a contradiction, because
infinities in a list do not affect the sum, invertible elements cause the function Z to vanish, and if
the list consists only of atoms, then the value is nonnegative by assumption (4.1). �

As an immediate consequence we obtain a stronger version of Theorem 3.5.

Corollary 4.9. If in addition to the assumptions of Theorem 3.5 the tree of every list is finite,
then φ 7→ φ|A is a one-to-one correspondence between KMSβ-states on NT (X) that factor through
the conditional expectation E and the tracial states on A satisfying (4.1).
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4.2. The directed case. If the right LCM monoid P is directed (hence a semi-lattice), in the
sense that pP ∩ qP 6= ∅ for every p, q ∈ P , we can actually prove that the tree (λω) is finite.

Proposition 4.10. Suppose P is a Noetherian, right LCM monoid such that xP ∩ yP 6= ∅ for
every pair x, y ∈ P , and let λ : In → P be a list of elements of P . Then the tree (λω) is finite, and
reduction of positivity to atoms holds for P .

Proof. By König’s lemma, the tree is infinite if and only if it has an infinite branch. By definition,
an infinite branch consists of an infinite sequence λω = (λω[1,k])k∈N of nodes associated to an infinite
word ω over {1, 2} such that for every level k the set λω[1,k](In) contains no invertible elements
and has at least one element with a nontrivial factorisation. We will show that there are no such
infinite branches.

We claim first that a branch ω can only have finitely many 2’s. Aiming for a contradiction,
we assume ω has infinitely many 2’s, occurring precisely as ωkj for an infinite increasing sequence
(kj)j∈N, while the rest of the ωi are equal to 1. Thus, ω[1, k1−1] is a string consisting of k1−1 ≥ 0
symbols equal to 1, followed by ωk1 = 2 (the first 2 in ω) followed by the string ω[k1 + 1, k2 − 1] of
k2 − k1 − 1 ≥ 0 symbols equal to 1, followed ωk2 (the second 2 in ω), and so on. Since ω(j) = 1 for
j ≤ k1 − 1. Lemma 4.4(1) applied k1 − 1 times gives

∨λ = ∨λω[1]g′1 = (∨λω[1,2]g′2)g′1 = · · · = (∨λω[1,k1−1]g
′
k1−1)g

′
k1−2 . . . g

′
2g
′
1,

and we set gk1 = g′k1−1 . . . g
′
2g
′
1, where gk1 = e in case k1 = 1. Since ωk1 = 2, Lemma 4.4(2) applied

to the list λω[1,k1−1] with U = In gives

∨λω[1,k1−1] = pk1(∨(λω[1,k1−1])2) = pk1(∨λω[1,k1])

for some generator pk1 ∈ Pa. Hence, writing dk := ∨λω[1,k] for k = 1, 2, . . ., we have shown that

(4.7) d0 = ∨λ = dk1−1gk1 = pk1dk1gk1 .

Now, let k2 > k1 be the second occurrence of a 2 in ω. If k2 = k1 + 1, set gk2 = e. Otherwise, by
Lemma 4.4(1) applied k2 − k1 − 1 times and by Lemma 4.4 applied at the k2 step we find g′j ∈ P
for j = k1 + 1, . . . , k2 − 1 and a generator pk2 ∈ Pa such that

∨λω[1,k2−1] = pk2(∨λω[1,k2])

and
∨λω[1,k1] = ∨λω[1,k2−1]g

′
k2−1 . . . g

′
k1+1.

Putting gk2 = g′k2−1 . . . g
′
k1+1, gives

dk1 = dk2−1gk2 = pk2dk2gk2 .

Inserting this in (4.7) we get
d0 = pk1(pk2dk2gk2)gk1 .

Continuing this way we get two sequences {pkm} in P \ P ∗ and {gkm} in P such that

d0 = pk1 . . . pkmdkm+1gkm . . . gk1 .

Thus (pk1 , pk1pk2 , pk1pk2pk3 , . . .) is a strictly increasing sequence of left divisors of d0, which con-
tradicts the assumption that P is Noetherian and completes the proof of the claim.

It follows that there exists k̄ such that ω[k] = 1 for all k ≥ k̄. We will show that this leads to a
contradiction. Notice that, by definition, the process defining λ1 will exhaust the factorisation of
λω[1,k̄]

(1) before moving onto that of λω[1,k̄]
(2), and so on. Continuing, we see that the j-th term

λω[1,k̄]
(j) of the list remains constant down the branch until it is changed for the first time after the

initial j− 1 terms have been replaced by generators, admitting no further nontrivial factorisations.
Each step in the λ1-process requires a nontrivial factorisation of exactly one of the terms in the list
at that level, that is, at the (k̄+ y)-th step, there exist exactly one j ∈ In, py ∈ Pa and qy ∈ P \P ∗
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such that λω[1,k̄+y]
(j) = pyqy and λω[1,k̄+y+1]

= py. The other terms in the list remain unchanged.

Since the list is finite, the λ1-process must stop after finitely many steps. This contradicts the
assumption that ω is an infinite branch, proving that the tree has to be finite. The last assertion
now follows by Theorem 4.8 �

The question of which monoids have reduction of positivity to subsets of atoms was raised in the
introduction of [3]. As a corollary we can add Artin monoids of finite type to that class.

Corollary 4.11. Reduction of positivity to generators holds for Artin monoids of finite type.

Proof. The result follows from Proposition 4.10 because Artin monoids of finite type are Noetherian,
directed, right LCM monoids. �

4.3. Right-angled Artin monoids. Our methods also recover the fact that reduction of positivity
holds for right-angled Artin monoids, cf. [3, Theorem 9.1].

Proposition 4.12. Suppose P is a right-angled Artin monoid, and let λ : In → P be a list of
elements of P . Then the tree (λω) is finite, and reduction of positivity to generators holds for P .

Proof. Let ω ∈ F+{1, 2}, and suppose that λω[1,k](In) is not a leaf for some k ∈ N. Recall from the
definition of λ1 and λ2 in (4.3) that when we factor the element λ(i) = sq in λω(In), we choose s
to be a generator, that is s ∈ Pa.

Let ` : P → N be the normalized length function on P (see Remark 2.4). We claim that
λω[1,k+1](j) either satisfies λω[1,k+1](j) =∞ or else `(λω[1,k+1](j)) ≤ `(λω[1,k](j)) for all j = 1, . . . , n,
and that the inequality is strict at least for the subindex i where the factorisation occurs. Indeed,
the length reduction clearly holds in λ1-step, that is, when ωk+1 = 1, because the length of the
element λω[1,k](i) being factorised goes down to 1, while the lengths of all the other elements remain
the same. Next we show that the length reduction also holds in the case of a λ2-step, that is, when
ωk+1 = 2. From [3, Lemma 9.2], we know that s ∨ p ∈ {p, sp, s,∞} for all p ∈ P and s ∈ Pa.
Thus s−1(s ∨ p) ∈ {s−1p, p, e,∞}, where the case s−1p only occurs if s is an initial letter in some
expression of p, in which case we have that s−1p ∈ P with `(s−1p) < `(p). From this it becomes
clear that either λω[1,k+1](j) =∞ or

λω[1,k+1](i) = `(s−1(p ∨ s)) ≤ `(p) = `(λω[1,k](i)),

for all i = 1, . . . , n. In this case the term λω[1,k](i) being factorised goes down in length by 1. This
finishes the proof of our claim.

If we now account for the total length
∑

j `(λ(j)) using the convention that `(e) = `(∞) = 0, we

see that k 7→
∑

j `(λω[1,k](j)) is a strictly decreasing sequence with values in the positive integers.

This excludes the possibility of an infinite branch, and thus the tree (λω) is finite by König’s
lemma. �

5. Reduction to minimal elements

In this section we show that for all weak quasi-lattice ordered groups (G,P ) with P Noetherian
there is a reduction of the positivity criterion (1.1) to a system of inequalities associated to subsets of
a set Pinf , see the definition below, that contains the atoms but may have other elements, although
in some special cases we can verify that Pinf = Pa. The definition of the set Pinf is motivated by
[20, Definition 4.9].

Definition 5.1. Suppose (G,P ) is a weak quasi-lattice ordered group with set of atoms Pa. Set
P1 := Pa and, recursively, Pn := P−1a Pn−1 ∩P = {x−1p | x ∈ Pa, p ∈ Pn ∩ xP} for each n ≥ 2; then
define the minimal set

Pinf :=
⋃
n∈N

Pn.
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Lemma 5.2. The minimal set Pinf is the smallest subset of P that contains Pa and is closed under
the operations p 7→ x−1(x ∨ p) for x ∈ Pa.

Proof. Clearly the set Pinf contains Pa and is closed under p 7→ x−1(x ∨ p), and if Q ⊂ P contains
Pa and is closed under p 7→ x−1(x∨p), then it obviously contains each of the Pn, and hence Pinf . �

Recall that ΩK denotes the intersection
⋂
k∈K(P\kP ) for each finite subset K ⊂ P ; and set

Ω∅ = P . Given a nonempty subset R of P , we define AR to be the collection of all finite (or empty)
disjoint unions of sets pΩK :

(5.1) AR := {
n⊔
j=1

pjΩKj : pj ∈ P and Kj ⊂ R finite or empty}.

By convention ∅ ∈ AR, arising from the empty union. It is apparent that if R ⊂ T ⊂ P , then
AR ⊂ AT . Our strategy for proving reductions of (1.1) to a smaller set of inequalities based on
Pinf is to show that when P is Noetherian, APinf

is itself an algebra of subsets of P , namely the
algebra BP from Lemma 2.5.

Lemma 5.3. The collection APa = {tnj=1pjΩKj : pj ∈ P and Kj ⊂ Pa finite or empty} contains

the set pP and its complement P \ pP for every p ∈ P .

Proof. Let p ∈ P . Setting K = ∅ in the definition shows that pP = pΩ∅ ∈ APa . Suppose now that
p = si1 . . . sik is an expression for p in terms of atoms.

Then we have

P \ pP = (P\si1P ) t (si1P\si1si2P ) t . . . t (si1 . . . sik−1
P\si1 . . . sikP )

= (P\si1P ) t si1(P\si2P ) t . . . t si1 . . . sik−1
(P\sikP ),

which is in APa by definition. �

Lemma 5.4. Let (G,P ) be a weak quasi-lattice ordered group with P Noetherian. Then APinf
is

the algebra BP .

Proof. By [3, Lemma 2.4] it suffices to prove that ΩK ∈ APinf
for every finite subsetK = {q1, . . . , qn}

of P . We do this by a double induction argument: for an arbitrary n, we first apply induction on
the number of atoms in qi, and then on k, the cardinality of K ∩ P .

Suppose first K = {q1, . . . , qn} with q1 ∈ P and q2, . . . , qn ∈ Pinf . We use induction on the
number of atoms in a factorisation of q1. If q1 is an atom then q1 ∈ Pinf , then ΩK is in APinf

by
definition. Assume now that ΩK ∈ APinf

for all K as above in which q1 ∈ P is a product of at most
N atoms, and let q ∈ P be a product of N + 1 atoms, so that q = s1q

′ for s1 ∈ Pa and q′ a product
of N atoms. Since Ωq = (P\s1P ) t s1(P\q′P ), we have

(5.2) Ω{q,q2,...,qn} = [(P\s1P ) t s1(P\q′P )] ∩ Ω{q2,...,qn} = Ω{s1,q2,...,qn} t s1(P\q′P ) ∩ Ω{q2,...,qn}.

By definition Ω{s1,q2,...,qn} ∈ APinf
, so we only need to show that s1(P\q′P ) ∩ Ω{q2,...,qn} ∈ APinf

.
We rewrite this intersection as

s1(P\q′P ) ∩ Ω{q2,...,qn} = s1(P\q′P ) ∩ (s1P\q2P ) ∩ · · · ∩ (s1P\qnP )(5.3)

= s1(P\q′P ) ∩ (s1P\(s1 ∨ q2)P ) ∩ · · · ∩ (s1P\(s1 ∨ qn)P )

= s1[(P\q′P ) ∩ (P\s−11 (s1 ∨ q2)P ) ∩ · · · ∩ (P\s−11 (s1 ∨ qn)P )].

By the definition of Pinf we have that s−11 (s1 ∨ qi) ∈ Pinf , since s1, qi ∈ Pinf for i = 1, . . . , n.
Moreover, q′ is a product of n atoms, thus, by the induction hypothesis, the intersection in the
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last line above is contained in APinf . From this we can conclude that APinf
contains the set

Ω{q,q2,...,qn} ∈ APinf
whenever q ∈ P and qj ∈ Pinf , for j = 2, . . . , n.

If K = {q1, q2, . . . , qn} with q1 ∈ P and q2, . . . , qn ∈ Pinf , then ΩK ∈ APinf
by the first part of

the proof. Assume now that ΩK ∈ APinf
for all K = {q1, q2, . . . , qn} such that q1, . . . , qk ∈ P and

qk+1, . . . , qn ∈ Pinf . We aim to show that

(5.4) ΩK ∈ APinf
when q1, . . . , qk+1 ∈ P and qk+2, . . . , qn ∈ Pinf .

As in the first part we use induction on the number of atoms in qk+1. If qk+1 is an atom itself,
then qk+1 ∈ Pa ⊂ Pinf , thus Ω{q1,...,qk+1,...,qn} ∈ APinf

by the induction hypothesis. Assume now that
(5.4) holds true when the (k + 1)th element is a product of at most M atoms. Suppose now the
(k+ 1)th element is a product of M + 1 atoms, and write qk+1 = sq′ ∈ P with s ∈ Pa and q′ ∈ P a
product of M atoms. As before,

(P\q′k+1P ) = (P\sP )t s(P\q′P ).

This splits Ω{q1,...,qk+1,...,qn} into a disjoint union of two intersections. The first one has an atom
s in the (k + 1)th term so it is in APinf

by the induction hypothesis, so proving (5.4) reduces to
showing that the second one, namely (P\q1P ) ∩ · · · ∩ s(P\q′P ) ∩ · · · ∩ (P\qnP ) is in APinf

. This
holds by the second induction hypothesis because

(P\q1P ) ∩ · · · ∩ s(P\q′P ) ∩ · · · ∩ (P\qnP ) =

s[(P\s−1(s ∨ q1)P ) ∩ · · · ∩ (P\q′P ) ∩ · · · ∩ (P\s−1(s ∨ qn)P ))]

and q′ is the product of M atoms. This concludes the proof. �

We are now ready to prove the main result of this section.

Theorem 5.5. Let (G,P ) be a weak quasi-lattice ordered group with P Noetherian. Assume that
we are given a compactly aligned product system {Xp}p∈P of essential C∗-correspondences over P
with Xe = A, a homomorphism N : P → (0,∞) and β ∈ R. Then a tracial state τ on A satisfies
the condition of (1.1) if and only if

(5.5) τ(a) +
∑
∅6=K⊂J

(−1)|K|N(∨K)−β Tr∨Kτ (a) ≥ 0 for all finite J ⊂ Pinf and a ∈ A+,

where the terms corresponding to ∨K =∞ are set to zero.

Proof. Obviously (1.1) implies (5.5). The proof that (5.5) implies (1.1) goes along the lines of the
proof of [3, Theorem 9.1], which is the particular case of right-angled Artin monoids.

Suppose τ is a tracial state of A satisfying (5.5). By taking J = {s} for s ∈ Pa we see that
Fs(τ)(a) ≤ N(s)βτ(a) <∞ for all s ∈ Pa and a ∈ A+. By Lemma 3.2, we have that Trpτ (a) is finite
for all p ∈ P and a ∈ A+.

Next recall that BP is the algebra generated by the collection {pP : p ∈ P}, and for each p ∈ P
define

µ(pP ) = N(p)−βFp(τ) for p ∈ P.
Then µ extends to a finitely additive measure, which we also denote by µ, defined on (P,BP ) with
values in the finite traces of A. Evaluating µ at the sets ΩJ =

⋂
p∈J(P\pP ) for finite nonempty

subsets J ⊂ P\{e} yields

µ(ΩJ) = µ(P )− µ(
⋃
p∈J

pP ) = Fe(τ) +
∑
∅6=K⊂J

(−1)|K|N(∨K)−βF∨K(τ).

Thus our assumption (5.5) guarantees that µ(ΩJ) ≥ 0 for all finite subsets J ⊂ Pinf and we must
prove that this positivity holds for all finite subsets J ⊂ P \ {e}. By Lemma 5.4 it suffices to show
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that µ is positive on all sets in the family APinf
. Fix a finite subset K of Pinf . For p ∈ P we have

that

µ(pΩK) = N(p)−βFp(τ) +
∑
∅6=H⊂K

(−1)|H|N(p(∨H))−βFp(∨H)(τ)

= N(p)−βFp(µ(ΩK)),

and the right hand side is positive because µ(ΩK) is positive by assumption. By finite additivity,
µ is positive on every set in APinf

, which completes the proof. �

Example 5.6. By exhibiting classes of examples, we point out that the set Pinf can be finite, in
which case Theorem 5.5 provides a significant reduction, and that the inclusion Pa ⊂ Pinf can be
strict for some monoids and an equality for others.

(i) When P = A+
M is an Artin monoid with finite generating set, the set Pinf finite because it is

contained in the finite Garside family shown to exist in [10, Theorem 1.1].
(ii) If P is a finite-type Artin monoid that is not abelian, then there exist canonical generators s, t

such that ms,t > 2, so that s−1(s ∨ t) = 〈ts〉ms,t−1 /∈ S. Thus Pinf 6= S. In this case the arguments
of Section 4 yield the reduction of positivity to generators, which is stronger than Theorem 5.5.

(iii) In contrast, when P is a right-angled Artin monoid it is easy to see from [3, Lemma 9.2]
that Pinf is equal to the set of canonical generators. Formally, this recovers [3, Theorem 9.1] as a
corollary of Theorem 5.5, but unlike Proposition 4.12, this proof is not really different since the
proof of Theorem 5.5 is modelled on that of [3, Theorem 9.1].

6. KMS-gaps

We assume in this section that (G,P ) has no nontrivial invertible elements, that is, P∩P−1 = {e}.
It is known that the associated (full) semigroup C∗-algebra C∗(P ) may be viewed as the Nica-
Toeplitz algebra NT (X) constructed from the product system X = {Xp}p∈P with one-dimensional
fibres Xp = C, where the left action is given by complex multiplication for all p ∈ P , see [28,
Proposition 5.6]. Suppose that N : P → (0,∞), let σt(vp) = N(p)itvp for p ∈ P and t ∈ R and let
us analyse (1.1) for (C∗(P ), σ).

Since A = Xe
∼= C, a tracial state τ on A is simply τ = id. Moreover, for each finite non-empty

K ⊂ P such that ∨K <∞ we have Tr∨Kτ = τ = id. Thus for given β ∈ R, (1.1) rewrites as

(6.1) 1 +
∑
∅6=K⊂J

(−1)|K|N(∨K)−β ≥ 0, for all finite nonempty J ⊂ P \ {e}.

This condition implies the existence of a KMSβ-state for (C∗(P ), σ) by Theorem 3.5. This condition
also implies that the finitely additive measure on BP given by

(6.2) µ(pP ) = N(p)−β for pP ∈ BP

extends to a genuine measure on the σ-algebra generated by {pP : p ∈ P}.
A refinement of this observation was implicit already in [3]. More precisely, it was shown in [3,

Lemma 7.2] that every finitely additive measure µ on (P,BP ) such that
∑

p∈P µ(pP ) <∞ extends

to a genuine measure on the σ-algebra of all subsets of P . When µ is as in (6.2), we are asking that∑
p∈P N(p)−β <∞. Recall from [3, Definition 7.8] that the infimum of all such real β is the critical

inverse temperature of the system (C∗(P ), σ), where we assume that N(p) ≥ 1 for all p ∈ P . When
βc is finite, there is a unique KMSβ-state for every β > βc, and it is of finite type in the sense of
[3, Definition 6.4], see also [3, Example 9.6]. Assuming further that P is Noetherian, that P has a
finite set of atoms and that N(p) > 1 for all p ∈ P \ {e}, any possible KMSβ-state of infinite type
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will arise at values β where

1 +
∑

∅6=K⊂Pa

(−1)|K|N(qK)−β = 0,

cf. [6] and [3]. Note that this condition means that (6.1) reduces to having equality at the single
subset J = Pa of P \ {e}.

We note at this point that in case (G,P ) is lattice ordered, then for any homomorphism N :
P → (0,∞), condition (6.1) is trivially satisfied at β = 0 for every J , because it reduces to∑

K⊂J(−1)|K| = 0, which follows by the binomial formula. Thus (C∗(P ), σ) admits a gauge-
invariant KMS0-state. We note that this was first proved in [6, Proposition 3.7], cf. the equivalence
of (2) and (4), which does not require the additional assumption that N(p) = 1 only if p = e. In
this case any KMS0-state is of infinite type [3, Corollary 6.10(i)].

6.1. Artin monoids of finite type and KMS-gaps. Next we wish to apply the results of the
previous sections to illustrate a new phenomenon in the context of C∗-algebras of Artin monoids,
namely the appearance of gaps in the subset of inverse temperatures that support KMS-states. The
next definition makes this precise.

Definition 6.1. Let (G,P ) be quasi-lattice ordered. Assume that we are given a compactly
aligned product system {Xp}p∈P of C∗-correspondences over P with Xe = A and a homomorphism
N : P → (0,∞) . We say that (NT (X), σ) has a KMS-gap if

{β ∈ R | there exists a gauge-invariant KMSβ -state} is disconnected.

A large class of monoids where there are no KMS-gaps is provided by non-abelian right-angled
Artin monoids, cf. the last paragraph of Example 9.6 of [3]. More precisely, let P be a non-abelian
right-angled Artin monoid with finite generating set S ⊂ P \ {e}. Let N : P → (0,∞) be a
homomorphism such that N(p) = 1 only for p = e. Then P is not lattice ordered, βc > 0 by [6,
Proposition 3.7], and the possible behavior of KMSβ-states is as follows: there are none for β < βc,
there is a unique KMSβc-state, which is of infinite type, and for each β > βc there is a unique
KMSβ-state, which is of finite type. In particular, there are no KMS-gaps.

Next we see that the Artin braid monoids B+
n for n ≥ 3 offer a different picture.

Proposition 6.2. Suppose n ≥ 3 and let G be the braid group Bn with generating set {s1, s2, . . . , sn−1}
and relations

sisjsi = sjsisj when |i− j| = 1
sisj = sjsi when |i− j| ≥ 2.

Let B+
n be the associated braid monoid and let N : B+

n → [1,∞) be the homomorphism given by
N(p) = exp(`(p)) for p ∈ B+

n , where ` is the normalised length function on B+
n . Then (C∗(B+

n ), σ)
has a gauge-invariant KMS0-state and no KMSβ-states in the interval (0, a), where exp(−a) =√

5/2− 1/2 ≈ 0.61803 is (the reciprocal of) the golden ratio.

Proof. Since P = B+
n is lattice ordered, there is a gauge-invariant KMS0-state, as we already

observed. In order to show there is a KMS-gap that extends from 0 to at least a we show that (6.1)
fails for the subset J = {s1, s2}, that is

gJ(β) = 1 +
∑
∅6=K⊂J

(−1)|K|N(∨K)−β

is strictly negative in the interval (0, a). Since `(s1 ∨ s2) = `(s1s2s1) = 3, is is clear that

g{s1,s2}(β) = 1− 2e−β + (e−β)3.
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The polynomial 1 − 2t + t3 is negative in the interval (
√
5
2 −

1
2 , 1) determined by its two positive

roots, so if we set t = e−β we see that g{s1,s2}(β) < 0 for β ∈ (0, a). Hence (6.1) fails for J = {s1, s2}
and all β in (0, a), so there are no KMSβ-states in (0, a). �

Corollary 6.3. (1) Let t1 =
√

5/2 − 1/2 ≈ 0.618 be the smallest positive root of the clique
polynomial 1− 2t+ t3 of B+

3 , and define a = − log t1. Then the inverse temperature space
of (C∗(B+

3 ), σ) is {0} ∪ [a,∞]
(2) Let r1 be the smallest positive root of 1− 2t− t2 + t3 + t4 + t5, and b = − log r1. Then the

inverse temperature space of (C∗(B+
4 ), σ) is {0} ∪ [b,∞].

Proof. The clique polynomial is the reciprocal of the growth series, see [27], so a and b are the critical
temperatures for B+

3 and B+
4 respectively and we know from [6, Theorem 3.5] and [6, Proposition

3.7] that there is a KMSβ-state for each β ∈ {0} ∪ [βc,∞], which is unique for β 6= 0. Recall also

from [6, Proposition 4.5] that if there exists a KMSβ-state for some β ∈ (0, βc), then e−β has to be

a root of the clique polynomial in the interval (e−βc , 1); however, [6] does not decide whether there
are any KMSβ-states corresponding to any intermediate roots. Our positivity criterion allows us to
retrieve the known part of the temperature space and show that there are no KMS states in (0, βc).

We deal with B+
3 first. Since here is only one relation, namely s1s2s1 = s2s1s2, and all subsets

are cliques, the clique polynomial is 1−2t+ t3, which has roots −
√

5/2−1/2 < 0, t1 =
√

5/2−1/2,
and 1 and is strictly positive on (0, t1). The other cliques have polynomials 1 and 1− t, which are
positive on all of (0, 1). Hence (6.1) holds for β ≥ βc, proving the assertion about B+

3 .
The relations in B+

4 are

s1s2s1 = s2s1s2, s2s3s2 = s3s2s3 and s1s3 = s3s1,

and since B4 is finite type, all the subsets of S are cliques:

∅, {s1}, {s2}, {s3}, {s1, s2}, {s2, s3}, {s1, s3}, {s1, s2, s3}
The common upper bounds of all but the full clique have been computed above, and ∨{s1, s2, s3} =
s3s2s1s3s2s3, which has length 6. Thus, the clique polynomial for B+

4 written with t = e−β, is
h(t) = 1− 3t+ t2 + 2t3 − t6 = (1− t)(1− 2t− t2 + t3 + t4 + t5).

We may now use the criterion of (6.1) for cliques J in S to check whether there is a gauge-
invariant KMSβ-state at β = − log r1. From the proof of Proposition 6.2 we know that the condition
is trivially satisfied for the choices J = {s1, s2} and J = {s2, s3}. For the choice J = {s1, s3}, the
corresponding polynomial 1−2t+ t2 is nonnegative everywhere. Finally, the one-element choices of
J yield the polynomial 1− t, which is positive at t1. Hence there is a gauge-invariant KMSβ-state
at β = − log r1 in view of Corollary 4.11 and [3, Theorem 5.1]. In the interval (0, 1) the polynomial
1 − 2t − t2 + t3 + t4 + t5 has two other roots, r2 ≈ 0.659 and r3 ≈ 0.874. But since the positivity
condition fails at both these roots for the clique polynomial 1 − 2t + t3 of J = {s1, s2}, there are
no KMSβ-state for β ∈ (0, b). This completes the proof for B+

4 . �

7. Characterisation of reduction to generators

In this section we investigate more closely conditions under which the positivity condition (5.5)
for the minimal set Pinf can be reduced to a smaller subset of inequalities, namely those involving
only finite subsets J of the set Pa of atoms. We assume throughout that (G,P ) is a weak quasi-
lattice ordered group. Recall that the key ingredient in the proof of Theorem 5.5 is Lemma 5.4
showing that the collection APinf

defined via (5.1) contains all sets ΩJ for J ⊂ P\{e} and hence is
the algebra BP from [3, Section 2].

Theorem 7.1. If the collection

APa = {tnj=1pjΩKj : pj ∈ P and Kj ⊂ Pa finite or empty}
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is an algebra, then APa = BP and reduction of the positivity condition to generators holds for P .

Proof. By Lemma 5.3, pP ∈ APa for all p ∈ P . Now, BP is the algebra (closed under finite unions,
intersections and complements) generated by the sets pP , so if APa is an algebra we get that
BP ⊆ APa , which implies that APa = APinf

. Following the proof Theorem 5.5 we see that condition
(1.1) can be reduced to subsets of Pa. �

In view of this we aim to find conditions ensuring that APa is an algebra. By Lemma 5.3 the
collection APa contains the sets pP and their complements P \pP , and obviously APa is also closed
under finite disjoint unions.

Lemma 7.2. Let (G,P ) be a weak quasi-lattice ordered group with P Noetherian. If APa is closed
under finite intersections, then it contains all arbitrary finite unions of sets of the form pP with
p ∈ P .

Proof. The proof is by induction on the cardinality of the union. If the cardinality is 1 the union
is a set on the form pP , which is in APa by Lemma 5.3. Let n ≥ 1 and assume that APa is closed
under unions of at most n sets of the form pP with p ∈ P . Let p1, p2, . . . , pn+1 ∈ P . We write

n+1⋃
i=1

piP =

(
n⋃
i=1

piP

)⋃
pn+1P

=

[(
n⋃
i=1

piP

)c⋂
pn+1P

]⊔[ n⋃
i=1

piP
⋂

pn+1P

]⊔[ n⋃
i=1

piP
⋂

(pn+1P )c

]
= B1

⊔
B2

⊔
B3.

We show next that the sets B1, B2 and B3 are in APa . We have B1 =
⋂n
i=1(piP )c

⋂
pn+1P ,

which is in APa by Lemma 5.3 and our hypothesis that APa is closed under finite intersections.
The set B2 takes the form

⋃n
i=1 (piP

⋂
pn+1P ) =

⋃n
i=1(pi ∨ pn+1)P , where (pi ∨ pn+1)P = ∅ if

pi ∨ pn+1 = ∞. Since this union has at most n terms, B2 ∈ APa by the induction hypothesis.
Similarly,

⋃n
i=1 piP ∈ APa by the induction hypothesis, and (pn+1P )c ∈ APa by Lemma 5.3, so

B3 ∈ APa because APa is closed under intersections. Since APa is closed under disjoint finite
unions, the proof is complete. �

Proposition 7.3. Let (G,P ) be a weak quasi-lattice ordered group with P Noetherian. If APa is
closed under finite intersections, then APa = BP .

Proof. We start by proving that APa is closed under complements. Fix a set A ∈ APa of the form
A =

⊔
i∈I piΩKi , where I is finite, pi ∈ P and Ki ⊂ Pa is finite, for every i ∈ I. We have that

Ac =
⋂
i∈I

(piΩKi)
c =

⋂
i∈I

pi ⋃
ki∈Ki

kiP

 ⊔
(piP )c

 .
Now (piP )c ∈ APa by Lemma 5.3 and

⋃
ki∈Ki kiP ∈ APa by Lemma 7.2, and it follows that each

set in the intersection over i ∈ I is in APa . Since APa is closed under finite intersections, we obtain
that Ac ∈ APa , as claimed. It remains to show that APa is closed under finite unions. Given
A1, A2 ∈ APa , we write

A1 ∪A2 = (A1 ∩Ac2) t (A1 ∩A2) t (A2 ∩Ac1),

and use the first part of the proof in conjunction with the hypothesis to obtain that A1∪A2 ∈ APa .
The general case follows by induction. This proves that APa is an algebra, which is clearly contained
in BP and contains pP for every p ∈ P , so APa = BP . �

25



Lemma 7.4. Let (G,P ) be a weak quasi-lattice ordered group with P Noetherian. Suppose that
(P\sP ) ∩ qΩK ∈ APa for all s ∈ Pa and all finite K ⊂ APa. Then APa is closed under finite
intersections.

Proof. Since every set in APa is a disjoint union of sets of the form qΩK with K ⊂ Pa, it suffices
to prove that (pΩL) ∩ (qΩK) ∈ APa for p, q ∈ P and K,L ⊂ Pa finite.

We proceed by induction on |L|. Assume first L = {s} for s ∈ Pa. If p ∨ q = ∞ we have
pP ∩ qP = ∅ and p(P\sP )

⋂
qΩK = ∅ ∈ APa . If p ∨ q <∞, we have

p(P\sP )
⋂
qΩK = p(P\sP )

⋂(
(p ∨ q)

⋂
k∈K

(P\kP )

)

= p

[
(P\sP )

⋂(
p−1(p ∨ q)

⋂
k∈K

(P\kP )

)]
.

Since the intersection is in APa by hypothesis and APa is closed under left multiplication by p, this
concludes the proof of the case |L| = 1.

Fix p, q ∈ P and a finite K ⊂ Pa. Suppose (pΩL′) ∩ (qΩK) ∈ APa for all L′ ⊂ Pa with |L′| = N
and let L ⊂ Pa be such that L = L′ ∪ {t} for t ∈ Pa, so that |L| = N + 1. Then[

p
⋂
h∈L

(P\hP )

]⋂
qΩK = p(P\tP )

⋂[
p
⋂
h∈L′

(P\hP )

]⋂
qΩK

= p(P\tP )
⋂
A′ ∈ APa .

By the induction hypothesis A′ is in APa , so it is a disjoint union of sets of the form qjΩKj , to
which we may apply the case |L| = 1 to complete the proof. �

Next we illustrate the above results with an application to the braid group on two generators.

Lemma 7.5. Let (B3, B
+
3 ) the finite-type Artin group-monoid pair with generating set S2 = {s1, s2}

and presentation

〈s1, s2 |s1s2s1 = s2s1s2〉.

If p ∈ B+
3 can be written as p = p1(s1s2s1)p2 for p1, p2 ∈ P , then s1 ≤ p and s2 ≤ p.

Proof. We only prove that s1 ≤ p, as the other claim is analogous. Assume for a contradiction that
s1 � p. Then we can write p in the form p = p1s1s2s1p2 where p1 6= e has the smallest possible
length. Now p1 must end with either s1 or s2. In case p1 = r1s1, we have p = r1(s1s1s2s1p2) =
r1(s1s2s1s2p2), contradicting the choice of p1. The case p1 = r1s2 leads to a similar contradiction.
Hence p admits an expression in the generators that starts with s1, which precisely means that
s1 ≤ p. �

Lemma 7.6. For all p ∈ B+
3 and i = 1, 2 we have that

p ∨ si ∈ {s1, s2, p, ps1, ps2, ps1s2, ps2s1}.

Proof. Assume i = 1 first. The case p = e is trivially satisfied, and the case p = s2 is easy to verify
because s1 ∨ s2 = s1s2s1 = s2s1s2 = ps1s2. The case s1 ≤ p obviously yields p∨ s1 = p. So we may
assume that p has at least two letters, and also that s1 6≤ p, so that p does not have a factor s1s2s1
by Lemma 7.5. In this case p∨ s1 = pb for some b ∈ B+

3 \ {e}. Factoring out the last two letters of
p, we write p = p1x where x is one of s1s2, s2s1, s

2
1, or s22, and it is easy to see that b is one of s1,

s2, s2s1, or s1s2, respectively. �

Proposition 7.7. Let (B3, B
+
3 ) be the braid group with generating set S2 = {s1, s2}. Then AS2 is

an algebra.
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Proof. By Proposition 7.3 and Lemma 7.4, we only need to show that the set

B := (P\siP )
⋂[

q
⋂
k∈K

(P\kP )

]
is in AS2 for i = 1, 2, finite K ⊆ S2 and q ∈ P . We rewrite

B = (P\siP )
⋂[

q
⋂
k∈K

(P\kP )

]
= q

[
(P\q−1(q ∨ si)P )

⋂(⋂
k∈K

(P\kP )

)]
.

By Lemma 7.6, we have q ∨ si ∈ {si, q, qs1, qs2, qs1s2, qs2s1} for i = 1, 2. This yields

(P\q−1(q ∨ si)P ) ∈ {∅, (P\s1P ), (P\s2P ), (P\s1s2P ), (P\s2s1P )}

for i = 1, 2. It is clear that if (P\q−1(q ∨ si)P ) is one of ∅, (P\s1P ), (P\s2P ), then B is contained
in AS2 .

Next we consider the case that (P\q−1(q ∨ si)P ) = (P\s1s2P ), and examine its possible inter-
section with ΩK for given K ⊂ S2. If K = {s1}, then (P\s1s2P ) ∩ (P\s1P ) = (P\s1P ) ∈ AS2 . If
K = {s2}, then (P\s1s2P )∩ (P\s2P ) = [s1(P\s2P ) t (P\s1P )]∩ (P\s2P ). We need to show that
s1(P\s2P ) ∩ (P\s2P ) ∈ AS2 . This follows from

s1(P\s2P ) ∩ (P\s2P ) = s1
[
(P\s2P ) ∩ (P\s−11 (s1 ∨ s2)P )

]
= s1 [(P\s2P ) ∩ (P\s2s1P )] = s1(P\s2P ).

In case K = {s1, s2} we obtain (P\s1s2P ) ∩ (P\s1P ) ∩ (P\s2P ) = (P\s1P ) ∩ (P\s2P ), which is
in AS2 . Checking the remaining case (P\q−1(q ∨ si)P ) = (P\s2s1P ) can be done in the same way.
Hence B ∈ AS2 and the proposition follows. �

Remark 7.8. It follows from Proposition 7.7 that reduction of positivity to generators holds for
B+

3 , a fact that already follows from Corollary 4.11 because B3 is of finite-type.

New examples of weak quasi-lattice ordered groups satisfying APa = BP can be obtained by
taking free and direct products. Suppose, for instance that G1 and G2 are two Artin groups with
canonical generating sets P 1

a and P 2
a and Coxeter matrices M1 and M2, respectively. Then their

free and direct products are also Artin groups with generating set Pa = P 1
a ∪ P 2

a , whose Coxeter
matrices have diagonal blocks M1 and M2 and remaining entries equal to∞, in the case of the free
product, or 2, in the case of the direct product. And similarly for the corresponding Artin monoids.

Proposition 7.9. Let (G1, P1) and (G2, P2) be two Artin group-monoid pairs, with canonical gen-
erating sets P 1

a and P 2
a , respectively, and suppose that AP 1

a
and AP 2

a
are algebras of subsets of P1

and P2 respectively. Let Pa = P 1
a ∪ P 2

a .

(1) (G1∗G2, P1∗P2) is an Artin group-monoid pair with generating set Pa subject to the relations
imposed in the presentations of G1 and G2, and the collection APa is an algebra of subsets
of P1 ∗ P2.

(2) (G1 × G2, P1 × P2) is an Artin group-monoid pair with generating set Pa satisfying the
relations s1s2 = s2s1 for all pairs of generators s1 ∈ P 1

a and s2 ∈ P 2
a in addition to the

relations already imposed in the presentations of G1 and G2, the collection APa is an algebra
of subsets of P1 × P2.

Proof. We prove (1) first. Let (G,P ) temporarily denote the free product to simplify the notation.
By Lemma 7.4 and Proposition 7.3, it suffices to show that

(7.1) (P\tP ) ∩ qΩK ∈ APa for all t ∈ Pa, q ∈ P, K ⊂ Pa.
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We start by rewriting B := (P\tP ) ∩ qΩK as

B = (P\tP )
⋂[

q
⋂
k∈K

(P\kP )

]
= q

[
(P\q−1(q ∨ t)P )

⋂(⋂
k∈K

(P\kP )

)]
.

Assume first that t ∈ P 1
a . If q ∈ P1, then B ∈ AP 1

a
⊆ APa by the assumption that AP 1

a
forms an

algebra of sets of P1. Otherwise there exists at least one atom s ∈ P 2
a that is a factor in q. Let

s1 be the first instance (from the left) of such an atom in q. Then q = as1b where a ∈ P1 and
b ∈ P . We then observe that t ∨ q = q if and only if t is a factor in a and t can be shuffled to
the front of a, and that otherwise t ∨ q = ∞, because t can not be shuffled past s1. This implies
that q−1(q ∨ t) ∈ {e,∞}, and so (P\q−1(q ∨ t)P ) ∈ {P, ∅}, leading to B ∈ APa . The argument is
analogous for the case where t ∈ P 2

a . This concludes the proof of (1).
In order to prove (2), let now (G,P ) denote the direct product. As with (1) it suffices to verify

(7.1). Writing K = K1 tK2 with K1 ⊆ P 1
a and K2 ⊆ P 2

a , we see that

B = q

(P\q−1(q ∨ t)P )
⋂ ⋂

k1∈K1

(P\k1P )

⋂ ⋂
k2∈K2

(P\k2P )

 .
Assume first that t ∈ P 1

a . If q ∈ P1, then q(P\q−1(q ∨ t)P )
⋂(⋂

k1∈K1
(P\k1P )

)
∈ AP 1

a
by the

assumption that AP 1
a

forms an algebra of sets of P1. Otherwise there exists at least one atom

s ∈ P 2
a that is a factor in q. Since P 2

a commutes with P 1
a in P , we can write q = q1s1 · · · sn, where

s1, . . . , sn ∈ P 2
a and q1 ∈ P1. By assumption t is in P 1

a , so it commutes with all the elements
s1, . . . , sn. Thus, q ∨ t = ∞ when q1 ∨ t = ∞, and q ∨ t = (q1 ∨ t)s1 · · · sn = s1 · · · sn(q1 ∨ t) when
q1 ∨ t <∞, in which case

q−1(q ∨ t) = q−11 s−1n · · · s−11 s1 · · · sn(q1 ∨ t) = q−11 (q1 ∨ t) ∈ P1.

Hence, we either have that (P\q−1(q ∨ t)P ) = P (in the case where q1 ∨ t =∞), or that

(P\q−1(q ∨ t)P )
⋂ ⋂

k1∈K1

(P\k1P )

 = (P\q−11 (q1 ∨ t)P )
⋂ ⋂

k1∈K1

(P\k1P )

 ∈ AP 1
a

(in the case where q1 ∨ t <∞), by the algebra assumption on AP 1
a
.

It remains to prove that p1ΩK1 ∩ΩK2 ∈ APa for all p1 ∈ P1, K1 ⊆ P 1
a and K2 ⊆ P 2

a . We observe
that

p1ΩK1 ∩ ΩK2 = p1

 ⋂
k1∈K1

(P\k1P )
⋂ ⋂

k2∈K2

(P\p−11 (p1 ∨ k2)P )


= p1

 ⋂
k1∈K1

(P\k1P )
⋂ ⋂

k2∈K2

(P\p−11 p1k2P )


= p1

 ⋂
k1∈K1

(P\k1P )
⋂ ⋂

k2∈K2

(P\k2P )


where the second equality follows by the fact that p1 ∨ k2 = p1k2 = k2p1, since k2 ∈ P 2

a ⊆ P2 and
p1 ∈ P1 and all elements from P1 commute with all elements from P2. Since the set in the last line
of the above calculation is clearly in APa , we conclude p1ΩK1 ∩ΩK2 ∈ APa . Interchanging the roles
of P 1

a and P 2
a proves the case t ∈ P 2

a and finishes the proof. �
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It is easy to see that by taking free and direct products of right-angled or finite-type Artin
monoids we obtain other Artin monoids many of which are neither right-angled nor finite-type. As
a result we obtain new monoids that satisfy reduction of positivity to generators.

Corollary 7.10. Under the assumptions of Proposition 7.9, let (G,P ) denote either the free or the
direct product of (G1, P1) and (G2, P2). Assume moreover that we are given a compactly aligned
product system {Xp}p∈P of C∗-correspondences over P with Xe = A, a homomorphism N : P →
(0,∞) and β ∈ R. Then reduction of the positivity condition to generators holds for P .

Proof. Combine Theorem 7.1 with Proposition 7.9. �
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