KMS STATES OF QUASI-FREE DYNAMICS ON C^{*}-ALGEBRAS OF PRODUCT SYSTEMS OVER RIGHT LCM MONOIDS

LUCA EVA GAZDAG, MARCELO LACA, AND NADIA S. LARSEN

Abstract

We generalise recent results of Afsar, Larsen and Neshveyev for product systems over quasi-lattice orders by showing that the equilibrium states of quasi-free dynamics on the NicaToeplitz C^{*}-algebras of product systems over right LCM monoids must satisfy a positivity condition encoded in a system of inequalities satisfied by their restrictions to the coefficient algebra. We prove that the reduction of this positivity condition to a finite subset of inequalities is valid for a wider class of monoids that properly includes finite-type Artin monoids, answering a question left open in their work. Our main technical tool is a combinatorially generated tree modelled on a recent construction developed by Boyu Li for dilations of contractive representations. We also obtain a reduction of the positivity condition to inequalities arising from a certain minimal subset that may not be finite but has the advantage of holding for all Noetherian right LCM monoids, and we present an example, arising from a finite-type Artin monoid, that exhibits a gap in its inverse temperature space.

1. Introduction

A very rich context for the study of KMS states is provided by the C^{*}-algebras $\mathcal{T}(X)$ and $\mathcal{O}(X)$ associated to a C^{*}-correspondence X by Pimsner [26]. These algebras can be endowed with various quasi-free dynamics, and one of the key features of the resulting C^{*}-dynamical systems is the relation between their KMS states and the traces of the coefficient algebra [17]. Since the C^{*}-algebras associated to product systems of C^{*}-correspondences are natural generalisations of Pimsner algebras [12, 28], it is natural to wonder about a similar study for product systems.

Along these lines, KMS states of Nica-Toeplitz C^{*}-algebras and their Cuntz-Pimsner quotients for special cases of product systems have been studied in $[13,1,6]$. More recently, partly motivated by the connection between combinatorial and analytic properties of quasi-lattice ordered monoids initially explored in [6], Afsar, Larsen and Neshveyev have completely characterised the traces of the coefficient algebra of a product system X that extend to KMS states of $\mathcal{N} \mathcal{T}(X)$ for all compactly aligned product systems over quasi-lattice ordered semigroups [3]. Their characterisation provides a unified perspective of several special cases previously studied and consists of a system of inequalities that amount to a positivity condition for induced traces. In principle such a system involves infinitely many inequalities. But for product systems over right-angled Artin monoids A_{M}^{+}, the positivity condition reduces to a more tractable system of inequalities that depends only on the canonical generating set of A_{M}^{+}and is finite whenever A_{M}^{+}is finitely generated [3, Section 9]. This immediately raises the concrete question of whether a similar result holds for other Artin monoids or indeed other monoids P.

In this article we show that this 'reduction of positivity to generators' is valid for finite-type Artin monoids, as well as other Artin monoids that are neither right-angled nor finite-type. Along the way, we also obtain a simplified characterisation, valid when P is a Noetherian right LCM monoid, in which the inequalities arise from a certain minimal subset $P_{\text {inf }}$ of P that was recently introduced in [20] by $\mathrm{B} . \mathrm{Li}$ in the context of regular dilations of contractive representations of monoids.

[^0]In order to describe our results in more precise terms, it is helpful to recall the abstract characterisation of KMS states in terms of the systems of inequalities from [3]. We refer to Section 2 below for the necessary definitions.

Suppose that (G, P) is a quasi-lattice ordered group, that $X=\left\{X_{p}\right\}_{p \in P}$ is a compactly aligned product system of C^{*}-correspondences over P with $X_{e}=A$, that the C^{*}-algebra $\mathcal{N} \mathcal{T}(X)$ is endowed with a time evolution defined by a homomorphism $N: P \rightarrow(0, \infty)$ and that $\beta \in \mathbb{R}$. For a finite subset K of P we denote by $\vee K \in P \cup\{\infty\}$ the smallest upper bound of the elements in K. If τ is a tracial state on A and $p \in P$, then $\operatorname{Tr}_{\tau}^{p}$ denotes the trace on A induced from τ through the bimodule X_{p} as in [17, Theorem 1.1]. This is the set-up of [3, Theorem 2.1], which shows that the inequality

$$
\begin{equation*}
\tau(a)+\sum_{\emptyset \neq K \subset J}(-1)^{|K|} N(\vee K)^{-\beta} \operatorname{Tr}_{\tau}^{\vee K}(a) \geq 0, \quad a \in A_{+}, \quad J \subset P \backslash\{e\} \tag{1.1}
\end{equation*}
$$

must hold for the restriction $\tau=\left.\phi\right|_{A}$ of a KMS_{β} state ϕ on $\mathcal{N} \mathcal{T}(X)$ for every finite J. By convention, the summands corresponding to $\vee K=\infty$ are zero. Moreover every tracial state of A satisfying (1.1) is the restriction of a KMS_{β}-state ϕ on $\mathcal{N} \mathcal{T}(X)$. In general, the restriction map may not be one to one, but [3, Theorem 5.1] shows that the gauge invariant KMS_{β}-states are in affine bijection with the tracial states of A satisfying the positivity condition (1.1).

Inequalities of the form (1.1) are often referred to as subinvariance conditions and have appeared before in the study of KMS states: the case of a single correspondence X requires one inequality [17, Theorem 2.1]; the case of a product system arising from finitely many $*$-commuting local homeomorphisms of a compact space involves finitely many inequalities [1, Proposition 4.1].

In principle, by [3, Theorem 5.1], the gauge-invariant KMS_{β}-states of the dynamics on $\mathcal{N} \mathcal{T}(X)$ arising from a homomorphism N can be determined by finding all the traces on A that satisfy the positivity condition. Needless to say, this procedure may be unmanageable in practice, so it becomes important to identify cases in which a smaller system of inequalities suffices.

Such a simplification was obtained in [3, Theorem 9.1] for the case in which P is a right-angled Artin monoid A_{M}^{+}. Specifically, denoting the set of canonical generators of A_{M}^{+}by S, in this case the positivity condition (1.1) is equivalent to

$$
\begin{equation*}
\tau(a)+\sum_{\substack{\emptyset \neq K \subset J \\ K \in c l(S)}}(-1)^{|K|} N(\vee K)^{-\beta} \operatorname{Tr}_{\tau}^{\vee K}(a) \geq 0 \text { for all finite } J \subset S \text { and } a \in A_{+}, \tag{1.2}
\end{equation*}
$$

where the sum is over the collection $\operatorname{cl}(S)$ of cliques of S, namely the collection of subsets of S that have an upper bound in P. We refer to such a result as reduction of the positivity condition (1.1) to atoms. Our main results are various reductions of the positivity condition to smaller systems of inequalities valid for several classes of monoids P.

As for our context, we begin by considering general right LCM monoids, which are the left cancellative monoids that have least common upper bounds and may contain nontrivial invertible elements. For some results we focus on the more restrictive class of group embeddable right LCM monoids that have no invertible elements other than the identity; these are known as weak quasi-lattice ordered monoids [2, Definition 2.1]. In most situations we will also assume P to be Noetherian; this is a suitable assumption that ensures the existence of a set of atoms which, together with the invertible elements, generate the monoid. It is known, for example, that the existence of a length function implies Noetherianity. Our main applications and most definite results are for finite-type Artin monoids, for which we answer in the positive, the question of reduction of positivity to generators raised in [3].

The paper is organised as follows. In Section 2 we review briefly the necessary background on monoids. The main results of Section 3 are the generalisations of Theorem 2.1 and Theorem 5.1 of
[3] to the Nica-Toeplitz algebra $\mathcal{N} \mathcal{T}(X)$ of a compactly aligned product system $X=\left(X_{p}\right)_{p \in P}$ over a right LCM monoid P. This is fairly straightforward, except for the need to upgrade several results about inducing in stages for product systems over Noetherian monoids P that have nontrivial invertible elements. This widens the range of applications and may be of independent interest. Since we do not assume the existence of an ambient group, we also propose a natural notion of gauge-invariance for KMS states on $\mathcal{N} \mathcal{T}(X)$. The key is to use certain conditional expectations that were implicit in [15] and [16] to replace the conditional expectations of the dual coactions that exist only when P embeds in a group.

In Section 4, motivated by [20], we construct a tree by an induction procedure that provides a recursion formula to keep track of how the positivity condition for a given level depends on the next level, Proposition 4.7. Our first main result is Theorem 4.8 where we show that reduction of positivity holds whenever the tree is finite. As applications we prove reduction results for finitetype Artin monoids, Corollary 4.11, and we also recover in Proposition 4.12 the reduction result for right-angled Artin monoids, which was proved by different means in [3, Theorem 9.1]. Further, Corollary 4.9 spells out the main practical method to find KMS states by verifying positivity on suitable finite subsets of P.

In Section 5 we take a different approach to reduction of the positivity condition. More precisely, we combine the technique from [3] for proving reduction for right-angled Artin monoids with a minimal set introduced by Boyu Li in [20]. This minimal set is the smallest subset of P that contains the atoms and is closed under taking left divisors of least upper bounds. The key step, Lemma 5.4, is to show that a certain algebra of subsets of P can be constructed from ideals $p P \subset P$ with p in the minimal set. Our second main result is Theorem 5.5 , which shows that for all Noetherian weak quasi-lattice orders there is a reduction of positivity to a subsystem of inequalities corresponding to the minimal subset.

In Section 6 we specialise to product systems with one-dimensional fibres, that is, $X_{p}=\mathbb{C}$ for all $p \in P$, and we illustrate, for the C^{*}-algebras of Artin braid monoids B_{n}^{+}for $n \geq 3$, the technique of finding KMS states by solving the system of equations (explicitly for $n=4$).

Finally, in Section 7 we refine the search of a suitable algebra of subsets of P for which reduction of positivity holds by going all the way down to the set of atoms inside the minimal subset of P. Theorem 7.1 formalises the result, and its main application, Corollary 7.10, provides a reduction of the positivity condition to atoms for a class of Artin monoids, obtained through free and direct products, which properly contains the finite-type and the right-angled ones. Explicit examples are given in Proposition 7.7. It remains an open question whether reduction of positivity to atoms holds for all Artin monoids.

2. Background

2.1. Semigroups, conditional right LCMs, and noetherianity. All semigroups in this paper have an identity, denoted e, and thus are monoids. We concentrate our attention on left cancellative monoids that admit a partial order under which conditional right least common multiples exist, also referred to as right LCM monoids. These objects fall under a broader class of monoids, and we refer to the monograph [11] as reference.

For p, q in a monoid P we say that q is a right multiple of p, written $p \leq q$, provided that there is $q^{\prime} \in P$ such that $p q^{\prime}=q$. Equivalently, $q \in p P$. A further equivalent formulation is that p is a left divisor of q. The set of left-divisors of q will be denoted $\operatorname{Div}_{l}(q)$. The relation \leq is an order when P is left cancellative with no non-trivial invertible elements. There are obvious definitions of the symmetric notions of left multiple (right divisor). The invertible elements in P form a group P^{*}, possibly the trivial group $\{e\}$.

Definition 2.1. [11, Definition 2.9] Let P be a left-cancellative monoid and let U be a subset of P. The element r of P is a least common right multiple, or right $L C M$, of U if r is a right multiple of each element of U and every element r^{\prime} of P that is a right multiple of each element of U is a right multiple of r.

A subset U of P that admits a right LCM $r \in P$ is called a clique in P. We denote a right LCM of U by $\vee U$ and note that $(\vee U) u$ is a right LCM of U for every $u \in P^{*}$. If U is a clique consisting of two elements p and q, we write $p \vee q$ for a right LCM of $\{p, q\}$. We write $\vee U=\infty$ when U has no right LCM. By convention, the empty set is a clique. Obviously, every one-element subset of P is a clique. For a subset $J \subset P$ we denote the collection of cliques U of J by $\operatorname{cl}(J)$.

Note that the operation \vee is associative on P (since P is left-cancellative), a fact which will be used tacitly throughout.

We recall now an important class of monoids: in [11], their defining property is called existence of conditional right LCM's. Right-cancellative monoids that admit conditional lcm's with respect to left multiples have been studied in e.g. [19].

Definition 2.2. A left-cancellative monoid P with the property that every two elements p and q that admit a common right multiple admit a right LCM will be called a right LCM monoid.

A monoid P is left-Noetherian (respectively right-Noetherian, respectively Noetherian) provided that there exists no infinite descending sequence in P with respect to proper left-divisibility (respectively proper right-divisibility, respectively proper factor relation). By [11, Proposition II.2.29], a left-cancellative monoid is Noetherian if and only if it is both right- and left-Noetherian.

If P is a left-cancellative monoid that is right-Noetherian, and if $q \in P$, then every sequence in $\operatorname{Div}_{l}(q)$ of the form $p_{1}, p_{1} p_{2}, p_{1} p_{2} p_{3}, \ldots$ with p_{n} non-invertible is necessarily finite, cf. [11, Proposition II.2.28] (i.e. The divisors of q have no infinite increasing sequences.) An analogous argument shows that if P is also right-cancellative and left-Noetherian, then for each $q \in P$, any sequence of the form $r_{1}, r_{2} r_{1}, r_{3} r_{2} r_{1}, \ldots$ with r_{n} non-invertible (i.e. an increasing sequence with respect to right-divisibility) in the set $\operatorname{Div}_{r}(q)$ of right-divisors of q is finite.

An atom in a monoid P is an element $s \in P \backslash P^{*}$ such that every decomposition of s as a finite product of elements in P contains at most one element in $P \backslash P^{*}$, see [11, Ch. II, Definition 2.52]. We denote the set of atoms in P by P_{a}.

It is proved in [11, Corollary II.2.59] that in a Noetherian left-cancellative monoid P that contains no non-trivial invertible elements, the set of atoms P_{a} is the smallest subset generating P. In an arbitrary left-cancellative Noetherian monoid, a generating set $P_{\text {gen }}$ is any subfamily that generates P^{*} and contains at least one element in each equivalence class of atoms for the relation \sim with $s \sim s^{\prime}$ if and only if $s^{\prime}=s u$ for $u \in P^{*}$, [11, Proposition 2.58].

We recall from [22], see also [9] that a discrete group G and a subsemigroup P so that $P \cap P^{-1}=$ $\{e\}$ form a quasi-lattice ordered pair for the partial order $x \leq y \Leftrightarrow x^{-1} y \in P$, with $x, y \in G$, if the following two conditions hold:
(QL1) For all $p, q \in P$ such that $\left(p q^{-1}\right) P \cap P \neq \emptyset$ there is (a necessarily unique) $r \in P$ so that $\left(p q^{-1}\right) P \cap P=r P$, and
(QL2) Given any pair $p, q \in P$ so that $p P \cap q P \neq \emptyset$ there is (a necessarily unique) element $p \vee q$ in P, their least common upper bound, so that $p P \cap q P=(p \vee q) P$.
A discrete group G and a subsemigroup P so that $P \cap P^{-1}=\{e\}$ form a weak quasi-lattice ordered pair if condition (QL2) alone is satisfied.
2.2. Artin monoids. We now recall some basic facts about Artin monoids. A Coxeter matrix over a set S is a matrix $M=\left(m_{s t}\right)_{s, t \in S}$ such that $m_{s t}=m_{t s} \in\{2, \ldots, \infty\}$ for all $s \neq t$ and $m_{s s}=1$ for all $s, t \in S$, with the convention that M may be an infinite matrix. The Artin group A_{M} associated
to M is the group with generating set S and presentation

$$
\left\{S \mid\langle s t\rangle^{m_{s t}}=\langle t s\rangle^{m_{t s}} \text { for all } s, t \in S\right\},
$$

where $\langle s t\rangle^{m_{s t}}=s t s \ldots$ is the alternating product of length $m_{s t}$; notice that the last letter of $\langle s t\rangle^{m_{s t}}$ is t when $m_{s t}$ is even and s when $m_{s t}$ is odd. The Artin monoid A_{M}^{+}is the monoid with the same presentation. As a consequence of [4, Verkürzungslemma], every Artin monoid admits conditional right LCM's and the explicit formula for the least common upper bound of two generators is given by the obvious guess.

Lemma 2.3. Every Artin monoid A_{M}^{+}embeds in the corresponding Artin group A_{M}, and the pair $\left(A_{M}, A_{M}^{+}\right)$is weak quasi-lattice ordered. If s and t are generators, then $s \vee t=\langle s t\rangle^{m_{s, t}}=\langle t s\rangle^{m_{t, s}}$ for all $s, t \in S$ with $m_{s, t}=m_{t, s}<\infty$.

Proof. The general embedding result is from [24], although various special cases had been known previously. That the pair is weak quasi-lattice ordered is a consequence of [4, Verkürzungslemma]. For the last assertion, it is clear that $\langle s t\rangle^{m_{s, t}}=\langle t s\rangle^{m_{t, s}}$ is an upper bound for both s and t in S. Suppose $x \in P$ is an arbitrary upper bound for s and t, that is, there exist $p, q \in P$ such that $x=s p=t q$. By [4, Verkürzungslemma], there exists a positive word w such that $p=\langle t s\rangle^{m_{s, t}-1} w$ and $q=\langle s t\rangle^{m_{t, s}-1} w$. Hence $x=s p=\langle s t\rangle^{m_{s, t}} w$, and hence $\langle s t\rangle^{m_{s, t}} \leq x$. Since x is arbitrary we can conclude that $s \vee t=\langle s t\rangle^{m_{s, t}}=\langle t s\rangle^{m_{t s}}$.

There are two particularly well understood classes of Artin groups and monoids: Right-angled Artin groups, where $m_{i j} \in\{2, \infty\}$ for all $i \neq j$ in Λ, and finite-type Artin groups, which are those for which the corresponding Coxeter group, which is the group obtained by adding the relations $s_{i}^{2}=e$ to those of A_{M}, is finite, from this it follows that their Coxeter matrix is finite and that it contains no infinities. Both form quasi-lattice ordered pairs, cf. [4] and [9].

Remark 2.4. Since Coxeter matrices are symmetric, the relations defining Artin monoids are homogeneous, in the sense that they preserve the total number of generators in a word. This implies that the usual length function on the free monoid factors through Artin monoids. As a consequence, all Artin monoids are Noetherian.
2.3. An algebra of subsets of P. Suppose that P is a right LCM monoid. For each $p \in P$, let $1_{p P}$ denote the characteristic function of the set $\{q \in P: p \leq q\}$. Then $B_{P}=\overline{\operatorname{span}}\left\{1_{p P}: p \in P\right\}$ is a commutative C^{*}-subalgebra of $l^{\infty}(P)$, see $[16$, Section 2] for further properties.

Following [3, Section 2] we denote by \mathcal{B}_{P} the algebra of subsets of P generated by the sets $p P$ for $p \in P$; by an algebra we mean a nonempty collection of subsets of P that is closed under taking complements and finite unions. Then the set of projections in B_{P} is precisely the set of characteristic functions of the elements of \mathcal{B}_{P}. For easy reference we state a version of [3, Lemma 2.4] valid for right LCM monoids.

Lemma 2.5. (cf. [3, Lemma 2.4]) For each finite subset J of P let

$$
\begin{equation*}
\Omega_{J}:=\bigcap_{q \in J}(P \backslash q P), \tag{2.1}
\end{equation*}
$$

where by convention $\Omega_{\emptyset}=P$ and $\Omega_{J}=\emptyset$ whenever $J \cap P^{*} \neq \emptyset$. Then every set \mathcal{B}_{P} is a finite disjoint union of sets of the form $p \Omega_{J}$, where $p \in P$ and $J \subset P$ is a finite set.

In the reduction of the positivity condition to generators proved in [3, Theorem 9.1] in the case of right-angled Artin monoids, the key ingredient is that to generate \mathcal{B}_{P} it suffices to take subsets $J \subset S$ of generators, see [3, Lemma 9.3].

3. Product systems over right LCM monoids

Suppose that P is a left cancellative monoid. The notion of a product system X over P of C^{*}-correspondences was introduced in [12]. In particular, [12] identified the important class of Nica-Toeplitz covariant representations of a compactly aligned product system X over a monoid P in a quasi-lattice ordered pair (G, P).

The analysis of KMS states for time evolutions on Nica-Toeplitz C^{*}-algebras of compactly aligned product systems over positive cones of quasi-lattice ordered groups was carried out in [3]. One of our aims here is to extend this analysis to product systems over the positive cones of weak quasi-lattice ordered groups, and, more generally, over right LCM monoids. Another more specific aim is to show that the reduction of the characterisation of KMS states to generators holds in other cases as well, notably for finite-type Artin monoids. We begin by briefly recalling some necessary background. For a comprehensive discussion of product systems of C^{*}-correspondences see $[12,28,7]$ in the quasi-lattice ordered case and the generalisation $[5,16]$ to the right LCM case.

Suppose that P is a (countable) cancellative semigroup with identity e and A a C^{*}-algebra. Let X be a right C^{*}-Hilbert A-module. We denote the adjointable operators on X by $\mathcal{L}(X)$ with identity I_{X}. A C^{*}-correspondence X over A is a right C^{*}-Hilbert A-module equipped with a left action given by a $*$-homomorphism $\varphi: A \rightarrow \mathcal{L}(X)$. The correspondence is essential if $\varphi(A)(X)=X$. A collection $\left(X_{p}\right)_{p \in P}$ of C^{*}-correspondences over A is a product system, cf. [12], if the following properties are satisfied:
(i) $\bigcup_{p \in P} X_{p}$ has a monoid structure such that for any $\xi \in X_{p}$ and $\zeta \in X_{q}$ we have $\xi \zeta \in X_{p q}$ and the map $\xi \otimes \zeta \mapsto \xi \zeta$ extends to an isometric isomorphism $X_{p} \otimes_{A} X_{q} \simeq X_{p q}$ for all $p, q \in P$ with $p \neq e$.
(ii) X_{e} is the canonical correspondence ${ }_{A} A_{A}$ and the product maps $X_{e} \times X_{p} \rightarrow X_{p}$ and $X_{p} \times$ $X_{e} \rightarrow X_{p}$ coincide with the structure maps of the A-bimodules X_{p} for all $p \in P$.
3.1. The Nica-Toeplitz C^{*}-algebra of X. A universal C^{*}-algebra $\mathcal{T}(X)$ is associated to a product system X via representations ψ of X. We refer to [12] for the definition of an arbitrary representation $\psi: X \rightarrow B$ with B a C^{*}-algebra. Next we recall in some detail the notion of Nica covariant representation of X, under further assumptions on P and X.

Suppose that P is a right LCM monoid and X is a product system over P of C^{*}-correspondences over a C^{*}-algebra A such that X_{p} is essential for every $p \in P$. Note that if $P^{*} \neq\{e\}$ then X will automatically have essential fibres, cf. [16, Remark 1.3]. The requirement of essential fibres is not needed to define Nica covariant representations and the universal C^{*}-algebra $\mathcal{N} \mathcal{T}(X)$, but is useful when we also bring into the discussion the reduced Nica-Toeplitz C^{*}-algebra $\mathcal{N} \mathcal{T}^{r}(X)$, cf. also [3].

Let I_{p} denote the identity operator in $\mathcal{L}\left(X_{p}\right)$ for every $p \in P$. If $p, r \in P$ with $p \leq r$, then there is a natural $*$-homomorphism $\iota_{p}^{r}: \mathcal{L}\left(X_{p}\right) \rightarrow \mathcal{L}\left(X_{r}\right)$ obtained by identifying X_{r} with $X_{p} \otimes_{A} X_{p^{-1} r}$ and mapping $S \in \mathcal{L}\left(X_{p}\right)$ into $S \otimes I_{p^{-1} r}$. Let $\mathcal{K}\left(X_{p}\right)$ denote the ideal of generalised compact operators in $\mathcal{L}\left(X_{p}\right)$ for each p. We say that X is compactly aligned if for all $p, q, r \in P$ with $p P \cap q P=r P$ we have that

$$
\iota_{p}^{r}\left(\mathcal{K}\left(X_{p}\right)\right) \iota_{q}^{r}\left(\mathcal{K}\left(X_{q}\right)\right) \subset \mathcal{K}\left(X_{r}\right) ;
$$

no condition is imposed when $p P \cap q P=\emptyset$. We define elements $\theta_{\xi, \zeta} \in \mathcal{K}\left(X_{p}\right)$ by $\theta_{\xi, \zeta} \eta=\xi\langle\zeta, \eta\rangle$, for $\xi, \zeta, \eta \in X_{p}$. Given a representation ψ of X into B, there are $*$-homomorphisms $\psi^{(p)}: \mathcal{K}\left(X_{p}\right) \rightarrow B$ given by $\psi^{(p)}\left(\theta_{\xi, \zeta}\right)=\psi_{p}(\xi) \psi_{p}(\zeta)^{*}$ for each $p \in P$. A representation ψ is Nica covariant if

$$
\psi^{(p)}(S) \psi^{(q)}(T)= \begin{cases}\psi^{(r)}\left(\iota_{p}^{r}(S) \iota_{q}^{r}(T)\right) & \text { if } p P \cap q P=r P \\ 0 & \text { otherwise }\end{cases}
$$

for all $S \in \mathcal{K}\left(X_{p}\right)$ and $T \in \mathcal{K}\left(X_{q}\right)$. We refer to [5, Section 6] and [16, Lemma 2.4] for further details. By definition, the Nica-Toeplitz algebra of X is the C^{*}-algebra $\mathcal{N} \mathcal{T}(X)$ generated by a universal Nica covariant representation $i_{X}: X \rightarrow \mathcal{N} \mathcal{T}(X)$.

Following [3], for each multiplicative semigroup homomorphism $N: P \rightarrow(0, \infty)$ we will consider the time evolution σ on $\mathcal{N} \mathcal{T}(X)$ such that $\sigma_{t}\left(i_{X}\left(\xi_{p}\right)\right)=N(p)^{i t} i_{X}\left(\xi_{p}\right)$ for $\xi_{p} \in X_{p}$ and $t \in \mathbb{R}$. We will need to assume throughout that N is trivial on P^{*}, that is, $N_{u}=1$ for every $u \in P^{*}$; this is automatic if the range of N is contained in $[1, \infty)$. Recall that a state ϕ of $\mathcal{N} \mathcal{T}(X)$ is a KMS state at inverse temperature β (a KMS_{β} state) provided that

$$
\phi(x y)=\phi\left(y \sigma_{i \beta}(x)\right)
$$

for all x, y with x analytic with respect to σ, that is to say, $t \mapsto \sigma_{t}(x)$ extends to a C^{*}-algebravalued entire function. Since in the present case it suffices to consider the σ-invariant set of analytic elements $i_{X}\left(\xi_{p}\right) i_{X}\left(\eta_{q}\right)^{*}$ with $\xi_{p} \in X_{p}$ and $\eta_{q} \in X_{q}$ because it has a dense linear span (it suffices to know that $i_{X}(\xi)$ generate $\mathcal{N} \mathcal{T}(X)$ as a C^{*}-algebra, see [3, Lemma 1.9]), we will see below that KMS_{β} states of $(\mathcal{N} \mathcal{T}(X), \sigma)$ are characterized by the condition

$$
\phi\left(i_{X}\left(\xi_{p}\right) i_{X}\left(\eta_{q}\right)^{*}\right)=\delta_{p, q} N^{-\beta} \operatorname{Tr}_{\tau}^{p}\left(\theta_{\eta_{q}, \xi_{p}}\right), \quad \xi_{p} \in X_{p}, \quad \eta_{q} \in X_{q},
$$

involving the induced trace of the tracial state $\tau:=\left.\phi\right|_{A}$.
3.2. Inducing traces via C^{*}-correspondences. We recall from [25, Sections 5.1 and 5.2] that a weight ψ on a C^{*}-algebra A is a map $\psi: A_{+} \rightarrow[0, \infty]$ that satisfies positive homogeneity: $\psi(\alpha a)=\alpha \psi(a)$ for all $\alpha \in \mathbb{R}_{+}$and $a \in A_{+}$, and additivity: $\psi(a+b)=\psi(a)+\psi(b)$ for all $a, b \in A_{+}$. The weight ψ is lower semicontinous if $\{a \mid \psi(a) \leq c\}$ is closed for all $c \in \mathbb{R}_{+}$. With $A_{+}^{\psi}:=\left\{a \in A_{+} \mid \psi(a)<\infty\right\}$, the space $A^{\psi}=\operatorname{span} A_{+}^{\psi}$ is a hereditary C^{*}-algebra of A on which ψ admits a unique extension as a positive linear functional, still denoted ψ. If the weight ψ is invariant under conjugation by unitary elements in the unitisation \tilde{A}, we say that it is a trace, in which case A^{ψ} is an ideal of A. Moreover, if ψ is a finite trace, meaning that $A_{+}^{\psi}=A_{+}$, then $\psi(a b)=\psi(b a)$ for all $a, b \in A$.

Suppose that X is a C^{*}-correspondence over A and τ a tracial positive linear functional on A. We recall from [17, Theorem 1.1] that the induced trace $\operatorname{Tr}_{\tau}^{X}$ is defined for $T \in \mathcal{L}(X), T \geq 0$ by

$$
\begin{equation*}
\operatorname{Tr}_{\tau}^{X}(T)=\sup _{H \subset X} \sum_{\xi \in H} \tau(\langle\xi, T \xi\rangle), \tag{3.1}
\end{equation*}
$$

where the supremum is taken over all finite subsets $H \subset X$ such that $\sum_{\xi \in H} \theta_{\xi, \xi} \leq 1$. Then $\operatorname{Tr}_{\tau}^{X}$ is strictly lower semicontinuous and satisfies

$$
\operatorname{Tr}_{\tau}^{X}(T)=\lim _{k} \sum_{\xi \in H_{k}} \tau(\langle\xi, T \xi\rangle) \quad \text { for all } T \in \mathcal{L}(X)_{+} .
$$

whenever H_{k} is a generalized sequence of finite sets in X such that $\left\{\sum_{\xi \in H_{k}} \theta_{\xi, \xi}\right\}_{k}$ is an approximate unit in $\mathcal{K}(X)$, moreover, $\operatorname{Tr}_{\tau}^{X}$ extends to a positive semifinite trace on $\mathcal{L}(X)$.

We are interested in the restriction of $\operatorname{Tr}_{\tau}^{X}$ to the image of A inside $\mathcal{L}(X)$ given by the left action. Recall from [17] that for each C^{*}-correspondence X over A there is an operator F_{X} mapping a tracial positive linear functional τ on A to a possibly infinite positive trace $F_{X} \tau$ on A defined by

$$
\left(F_{X} \tau\right)(a)=\operatorname{Tr}_{\tau}^{X}(a)
$$

for $a \in A_{+}$. Given a product system $\left\{X_{p}\right\}_{p \in P}$ of essential C^{*}-correspondences over P, we follow [3, Section 1.4] and write F_{p} instead of $F_{X_{p}}$ and $\operatorname{Tr}_{\tau}^{p}$ instead of $\operatorname{Tr}_{\tau}^{X_{p}}$ for all $p \in P$. Let φ_{p} be the left action on X_{p} and recall that if $\left.\left(\operatorname{Tr}_{\tau}^{q} \circ \varphi_{p}\right)\right|_{A}$ is a finite positive trace on A for some $q \in P$, then we
can use induction in stages [17, Proposition 1.2] and factor $F_{p q}(\tau)$ as $F_{p}\left(F_{q}(\tau)\right)$ for all $p \in P$. In other words, for $r=p q$ so that $F_{q}(\tau)=\left.\operatorname{Tr}_{\tau}^{q}\right|_{A_{+}}$is finite we have

$$
\begin{equation*}
\operatorname{Tr}_{\tau}^{r}(a)=\operatorname{Tr}_{F_{q}(\tau)}^{p}(a) \text { for } a \in A_{+} . \tag{3.2}
\end{equation*}
$$

In general, the induced trace $\operatorname{Tr}_{\tau}^{q}$, or rather $\operatorname{Tr}_{\tau}^{q} \circ \varphi_{p}$, need not be a finite trace on A. However, we recall from [3] that if τ satisfies condition (1.1) with $J=\{q\}$, then

$$
\begin{equation*}
\operatorname{Tr}_{\tau}^{q}(a) \leq \tau(a) N(q)^{\beta}<\infty \quad \text { for all } a \in A_{+} . \tag{3.3}
\end{equation*}
$$

In particular, $\operatorname{Tr}_{\tau}^{q}$ is a finite trace on A whenever τ is the restriction of a KMS_{β}-state.
3.3. A characterisation of KMS states on $\mathcal{N} \mathcal{T}(X)$. We will now extend [3, Theorem 2.1] to the case of Nica-Toeplitz algebras $\mathcal{N} \mathcal{T}(X)$ where X is a product system over a right LCM monoid. Before we can state the generalisation we need some preparation about induced traces for product systems over monoids that have nontrivial invertible elements.

Suppose that X is a product system over a right LCM monoid P with $X_{e}=A$. Recall that φ_{p} is the left action in X_{p} and I_{p} the identity operator in $\mathcal{L}\left(X_{p}\right)$, for all $p \in P$. As observed in [5], for each $u \in P^{*}$ the map $T \mapsto T \otimes I_{u^{-1}}$ is an adjunction from X_{u} to $X_{u^{-1}}$ in the sense of [8 , Definition 2.17], meaning that it induces a natural isomorphism

$$
\mathcal{L}\left(Z \otimes_{A} X_{u}, Y\right) \rightarrow \mathcal{L}\left(Z, Y \otimes_{A} X_{u^{-1}}\right)
$$

for any Hilbert A-modules Y, Z. One consequence is that by [14, Theorems 4.4(2) and 4.13], see also [8, Theorem 2.24], it necessarily must hold that $\varphi_{u}(a) \subseteq \mathcal{K}\left(X_{u}\right)$ for $u \in P^{*}$ and $a \in A_{+}$. A second consequence of the existence of this adjunction is that its restriction to the generalised compact operators is an isomorphism

$$
\mathcal{K}\left(Z \otimes_{A} X_{u}, Y\right) \rightarrow \mathcal{K}\left(Z, Y \otimes_{A} X_{u^{-1}}\right),
$$

cf. [8, Corollary 3.9], in other words it yields a local adjunction, for all $u \in P^{*}$. As in [8], we denote elements in $X_{u^{-1}}$ by ξ^{*}, where ξ runs over X_{u} (in the terminology of [8], the C^{*}-correspondence $X_{u^{-1}}$ is the conjugate of X_{u}). It follows from [8, Corollary 3.31] that A admits a direct sum decomposition

$$
A=A_{u^{-1}} \oplus A_{u^{-1}}^{\perp}
$$

into two-sided ideals $A_{u^{-1}}=\overline{\operatorname{span}}\left\{\left\langle\xi_{1}^{*}, \xi_{2}^{*}\right\rangle \mid \xi_{1}^{*}, \xi_{2}^{*} \in X_{u^{-1}}\right\}$ and $A_{u^{-1}}^{\perp}=\operatorname{ker}\left(\varphi_{u}\right)$. In particular, we have that $\varphi_{u}(A)=\varphi_{u}\left(A_{u^{-1}}\right)$.

We now let $F_{p, q}: X_{p} \otimes_{A} X_{q} \rightarrow X_{p q}$ denote the subordinate isomorphisms of C^{*}-correspondences for $p, q \in P$. Note that for each $u \in P^{*}$, the map

$$
F_{u, u^{-1}}^{-1}: X_{e} \rightarrow X_{u} \otimes_{A} X_{u^{-1}}
$$

is adjointable with adjoint $F_{u, u^{-1}}$, and satisfies the properties of being a unit for the adjunction corresponding to tensoring by X_{u} and $X_{u^{-1}}$. By uniqueness of the unit, the map $F_{u, u^{-1}}^{-1}$ is the adjoint of the map δ from [8, Lemma 3.18], hence it corresponds to the left action φ_{u} through a canonical isomorphism of $X_{u} \otimes_{A} X_{u^{-1}}$ onto $\mathcal{K}\left(X_{u}\right)$ identifying $\xi_{1} \otimes \xi_{2}^{*}$ with $\theta_{\xi_{1}, \xi_{2}}$, where $\xi_{1}, \xi_{2} \in X_{u}$, [8, Proposition 3.29]. Moreover, $F_{u, u^{-1}}$ can be identified with the map δ, so

$$
F_{u, u^{-1}}\left(\xi_{1} \otimes \xi_{2}^{*}\right)=\left\langle\xi_{1}^{*}, \xi_{2}^{*}\right\rangle \text { for } \xi_{1}^{*}, \xi_{2}^{*} \in X_{u^{-1}} .
$$

For the same reason, the map $F_{u^{-1}, u}^{-1}: X_{e} \rightarrow X_{u^{-1}} \otimes_{A} X_{u}$ must coincide with ε from [8, Lemma 3.18], so it corresponds to the left action $\varphi_{u^{-1}}$ upon canonical identification of $\xi_{1}^{*} \otimes \xi_{2}$ with $\theta_{\xi_{1}^{*}, \xi_{2}^{*}} \in$ $\mathcal{K}\left(X_{u^{-1}}\right)$, [8, Proposition 3.32]. Further,

$$
F_{u^{-1}, u}\left(\xi_{1}^{*} \otimes \xi_{2}\right)=\underset{8}{\left\langle\xi_{1}, \xi_{2}\right\rangle \text { for } \xi_{1}, \xi_{2} \in X_{u}}
$$

Since $F_{u^{-1}, u}^{-1} \circ F_{u, u^{-1}}: X_{u} \otimes_{A} X_{u^{-1}} \rightarrow X_{u^{-1}} \otimes_{A} X_{u}$ maps $\xi \otimes \xi^{*}$ to $\xi^{*} \otimes \xi$, where $\xi \in X_{u}$, it follows that

$$
\begin{equation*}
\left\langle\xi^{*}, \xi^{*}\right\rangle=\langle\xi, \xi\rangle \text { for all } \xi \in X_{u} \tag{3.4}
\end{equation*}
$$

Lemma 3.1. Suppose that $X=\left\{X_{p}\right\}_{p \in P}$ is a product system of C^{*}-correspondences over a right LCM monoid P with $X_{e}=A$. Suppose that τ is a tracial state on A. Then the trace on A defined as $\operatorname{Tr}_{\tau}^{X_{u}}\left(\varphi_{u}(a)\right)$ for $u \in P^{*}, a \in A_{+}$coincides with τ. In particular, for every $p \in P$ and all $a \in A_{+}$ we have that

$$
\operatorname{Tr}_{\tau}^{X_{p u}}\left(\varphi_{p u}(a)\right)=\operatorname{Tr}_{\tau}^{X_{p}}\left(\varphi_{p}(a)\right)=\operatorname{Tr}_{\tau}^{X_{u p}}\left(\varphi_{u p}(a)\right) .
$$

Proof. We recall that $\operatorname{Tr}_{\tau}^{Y}(\varphi(a))$ is defined in [17, Proposition 1.2] for an arbitrary C^{*}-correspondence Y over A. Given $u \in P^{*}$, let $\left(e_{J}\right)_{J}$ with $e_{J} \leq I_{u}$ be an approximate unit for $\mathcal{K}\left(X_{u}\right)$ where $e_{J}=\sum_{\eta \in J} \theta_{\eta, \eta}$. Let $a=\left\langle\xi^{*}, \xi^{*}\right\rangle \in A_{+}$for $\xi \in X_{u}$. We have that

$$
\begin{aligned}
\operatorname{Tr}_{\tau}^{X_{u}}\left(\varphi_{u}(a)\right) & =\sup _{J} \sum_{\eta \in J} \tau\left(\left\langle\eta, \varphi_{u}(a) \eta\right\rangle\right) \\
& =\sup _{J} \sum_{\eta \in J} \tau\left(\left\langle\eta,\left\langle\xi^{*}, \xi^{*}\right\rangle \eta\right\rangle\right) \\
& =\sup _{J} \sum_{\eta \in J} \tau\left(\left\langle\eta, \theta_{\xi, \xi} \eta\right\rangle\right) \\
& =\sup _{J} \sum_{\eta \in J} \tau(\langle\eta, \xi\rangle\langle\xi, \eta\rangle) \\
& =\sup _{J} \sum_{\eta \in J} \tau(\langle\xi, \eta\rangle\langle\eta, \xi\rangle) \text { since } \tau \text { is a trace } \\
& =\sup _{J} \sum_{\eta \in J} \tau\left(\left\langle\xi, \theta_{\eta, \eta} \xi\right\rangle\right) \\
& =\tau(\langle\xi, \xi\rangle) \text { since } e_{J} \text { is an approximate unit } \\
& =\tau(a)
\end{aligned}
$$

by the assumption on $\left(e_{J}\right)$ and (3.4). By linearity and continuity we have that $\operatorname{Tr}_{\tau}^{X_{u}}\left(\varphi_{u}(a)\right)=\tau(a)$ for all $a \in A_{+}$. The displayed equalities follow by two applications of [17, Proposition 1.2], namely by letting $q \in P^{*}$ and, respectively, $p \in P^{*}$ in equation (3.2).

Lemma 3.2. Let P be a Noetherian right LCM monoid, $\left\{X_{p}\right\}_{p \in P}$ a compactly aligned product system of essential C^{*}-correspondences over P with $X_{e}=A, N: P \rightarrow(0, \infty)$ a multiplicative homomorphism, τ a finite positive trace on A and $\beta \in \mathbb{R}$.
(i) Suppose that $\operatorname{Tr}_{\tau}^{s}(a) \leq N(s)^{\beta} \tau(a)$ for all $s \in P_{a}$, a $\in A_{+}$. Then $\operatorname{Tr}_{\tau}^{p}(a) \leq N(p)^{\beta} \tau(a)$ for all $p \in P$ and $a \in A_{+}$. In particular $\left.\operatorname{Tr}_{\tau}^{p}\right|_{A}$ is a tracial linear functional on A for every p.
(ii) Suppose that $\left.\operatorname{Tr}_{\tau}^{p}\right|_{A}$ is finite for every $p \in P$ and for each finite subset U of P with $\vee U<\infty$ set $\tau_{U}=\left.\operatorname{Tr}_{\tau}^{\vee U}\right|_{A}$. Then $\operatorname{Tr}_{\tau_{U}}^{p}(a)<\infty$ for all $p \in P$ and $a \in A_{+}$.
Proof. Let $N_{0}(p)=N(p)^{\beta}$ for all $\in P$. Assume the hypothesis of (i) and let $p \in P$. If $p \in P^{*}$, then $\operatorname{Tr}_{\tau}^{p}(a)=\tau(a)=N_{0}(p) \tau(a)$ for all $a \in A_{+}$by Lemma 3.1. If $p \in P \backslash P^{*}$, then the element p can be expressed as a product of the form $p=g s_{1} g_{1} s_{2} g_{2} \ldots s_{n} g_{n}$, for some $n \geq 1$, with $s_{j} \in P_{a}$ and g, g_{j} in a generating set for P^{*} (which we assume contains the identity) for each $j=1, \ldots, n$, see Section 2. We will prove the claim by induction on the number of atoms in the expression of p.

Let first $p=g s_{1} g_{1}$ where $s_{1} \in P_{a}$ and $g, g_{1} \in P^{*}$. Then for $a \in A_{+}$we have

$$
\operatorname{Tr}_{\tau}^{p}(a)=\operatorname{Tr}_{\tau}^{s_{1}}(a) \leq N_{9} N_{0}\left(s_{1}\right) \tau(a)=N_{0}(p) \tau(a)
$$

by Lemma 3.1 and our hypothesis
Assume now that $\left.\operatorname{Tr}_{\tau}^{p}\right|_{A} \leq N_{0}(p) \tau$ for all $p \in P$ that can be expressed as a product of generators containing n atoms, for $n \geq 2$. Let $q \in P$ be of the form $q=g s_{1} g_{1} s_{2} g_{2} \ldots s_{n} g_{n} s_{n+1} g_{n+1}$, with $s_{j} \in P_{a}$ and g, g_{j} in a generating set for P^{*} for $j=1, \ldots, n+1$. Set $p=g_{1} s_{2} g_{2} \ldots s_{n} g_{n} s_{n+1} g_{n+1}$, so that $q=g s_{1} p$.

By the inductive hypothesis applied to $p, \tau_{0}=\left.\operatorname{Tr}_{\tau}^{p}\right|_{A}$ is a finite trace on A. Then, applying Lemma 3.1, equation (3.2), the inductive hypothesis on p and our hypothesis on s_{1}, we get that

$$
\begin{aligned}
\operatorname{Tr}_{\tau}^{q}(a)=\operatorname{Tr}_{\tau}^{g s_{1} p}(a) & =\operatorname{Tr}_{\tau_{0}}^{s_{1}}(a)=\sup _{F} \sum_{\xi \in F} \tau_{0}(\langle\xi, a \xi\rangle) \\
& \leq \sup _{F} \sum_{\xi \in F} N_{0}(p) \tau(\langle\xi, a \xi\rangle) \\
& =N_{0}(p) \operatorname{Tr}_{\tau}^{s_{1}}(a) \leq N_{0}(p) N_{0}\left(s_{1}\right) \tau(a) \\
& =N_{0}(q)(a)
\end{aligned}
$$

for all $a \in A_{+}$, where F are finite subsets of $X_{s_{1}}$. We can conclude that $\operatorname{Tr}_{\tau}^{q}(a) \leq N_{0}(q) \tau(a)<\infty$ for all $a \in A_{+}$and all $q \in P$. This shows (i).
For (ii), fix a finite subset $U \subset P$ with $\vee U<\infty$. We have that $\tau_{U}=\operatorname{Tr}_{\tau}^{\vee U}$ is a finite trace on A by assumption. Then

$$
\operatorname{Tr}_{\tau_{U}}^{p}(a)=\operatorname{Tr}_{\tau}^{p(\vee U)}(a)<\infty
$$

for all $a \in A_{+}$and $p \in P$ follows by [17, Proposition 1.2], see equation (3.2).
We shall need generalisations of [3, Theorem 2.1] and [3, Theorem 5.1] valid for right LCM monoids.

Theorem 3.3. (cf. [3, Theorem 2.1]) Assume that P is a right LCM monoid and $X=\left\{X_{p}\right\}_{p \in P}$ is a compactly aligned product system of essential C^{*}-correspondences over P with $X_{e}=A$. Consider the time evolution on $\mathcal{N} \mathcal{T}(X)$ defined by a homomorphism $N: P \rightarrow(0, \infty)$, and assume ϕ is a KMS_{β}-state on $\mathcal{N} \mathcal{T}(X)$ for some $\beta \in \mathbb{R}$. Then $\tau=\left.\phi\right|_{A}$ is a tracial state on A satisfying condition (1.1) for all finite $J \subset P \backslash\{e\}$ and $a \in A_{+}$.

Proof. The argument follows the one from [3]. Let (π, H, ξ) be the Hilbert space of the GNS representation of $\mathcal{N} \mathcal{T}(X)$ from ϕ. There are two main points where we need an extension to the right LCM case. First, we need to know that

$$
N(p u)^{-\beta} \operatorname{Tr}_{\tau}^{X_{p u}}\left(\varphi_{p u}(a)\right)=N(p)^{-\beta} \operatorname{Tr}_{\tau}^{X_{p}}\left(\varphi_{p}(a)\right)
$$

for all $p \in P, u \in P^{*}$ and $a \in A$. Since $N(u)=1$ because N is a homomorphism, this claim follows directly from Lemma 3.1.

Second, we need an analogue of the projections $f_{p}, p \in P$ from [3]. For each $p \in P$, let $1_{p P}$ denote the characteristic function of the set $\{q \in P: p \leq q\}$. Then $B_{P}=\operatorname{span}\left\{1_{p P}: p \in P\right\}$ is a commutative C^{*}-subalgebra of $l^{\infty}(P)$. Furthermore, just as in the case of quasi-lattice ordered pairs cf [3, Section 2], the set $\left\{1_{p P} \mid p \in P\right\}$ is linearly independent.

Since the representation $\pi: \mathcal{N} \mathcal{T}(X) \rightarrow B(H)$ corresponds to a Nica covariant representation $\psi: X \rightarrow B(H)$ through $\psi=\pi \circ i_{X}$, we let $\alpha_{p}^{\psi}(1)$ be the projection in $\psi_{e}(A)^{\prime} \subset B(H)$ from [12, Proposition 4.1] (which is the case of quasi-lattice orders, see [16, Lemma 2.28] for the right LCM case). We have that $\alpha_{p}^{\psi}(1) \alpha_{q}^{\psi}(1)=\alpha_{r}^{\psi}(1)$ whenever $p P \cap q P=r P$ and $\alpha_{p}^{\psi}(1) \alpha_{q}^{\psi}(1)=0$ when p and q do not admit a common right multiple, see [15, Proposition 9.5 and Lemma 9.3] in connection with [16, Lemma 2.4]. By [16, Proposition 2.30], there is a representation L_{π} of B_{P} on H determined by $L_{\pi}\left(1_{p P}\right)=\alpha_{p}^{\psi}(1)$. In particular, $\alpha_{p}^{\psi}(1)$ is the strong limit of $\pi\left(i_{X}^{(p)}\left(u_{j}\right)\right)$ for every approximate unit
$\left(u_{j}\right)_{j}$ in $\mathcal{K}\left(X_{p}\right)$. Thus with projections $\alpha_{p}^{\psi}(1)$ instead of f_{p}, for $p \in P$, the proof of [1, Theorem 2.1] can be adapted verbatim to the case when P is right LCM.
3.4. Gauge-invariant KMS states. It is natural to ask if the necessary condition (1.1) describing a KMS state is also sufficient for its existence. A positive answer is given in [3, Theorem 5.1], as we now briefly recall. Suppose that X is a compactly aligned product system X over a monoid P in a quasi-lattice ordered pair (G, P). Then there exists a canonical coaction δ^{G} of G on $\mathcal{N T}(X)$ that yields a grading into a family of subspaces $\mathcal{N} \mathcal{T}(X)_{g}$ for $g \in G$, cf. [7, Proposition 3.5]. A state ϕ on $\mathcal{N} \mathcal{T}(X)$ is gauge-invariant if it vanishes on all $\mathcal{N} \mathcal{T}(X)_{g}$ where $g \neq e$, in other words if ϕ factors through the conditional expectation arising from δ^{G}, which maps $\mathcal{N} \mathcal{T}(X)$ onto its core subalgebra. Then the map $\left.\phi \mapsto \phi\right|_{A}$ defines a one-to-one correspondence between the gaugeinvariant KMS_{β}-states on $\mathcal{N} \mathcal{T}(X)$ and the tracial states on A satisfying (1.1), cf. [3, Theorem 5.1].

In order to extend this result to the case of product systems over right LCM monoids, the immediate question arises as to what should gauge-invariance mean in the absence of an ambient group containing the given monoid. The answer we suggest is that the state should factor through a canonical conditional expectation E of $\mathcal{N} \mathcal{T}(X)$, similar to the case of a quasi-lattice ordered pair (G, P). The reason for this is that the Fock module $\bigoplus_{p \in P} X_{p}$ induces a grading of P on the reduced Nica-Toeplitz algebra $\mathcal{N} \mathcal{T}^{r}(X)$, and this grading alone suffices to give rise to the desired conditional expectation on $\mathcal{N} \mathcal{T}(X)$. We next recall this construction, see [15, 16].

Given a compactly aligned product system of (essential) C^{*}-correspondences over a right LCM monoid P, there is a natural Nica covariant representation l of X on $\bigoplus_{p \in P} X_{p}$, the Fock representation. For the sake of clarity we use the symbol l for this representation, just as in [12] (but unlike e.g. [16,3]), and reserve ℓ for a length function on a monoid. The C^{*}-algebra generated by l is the reduced Nica-Toeplitz algebra $\mathcal{N} \mathcal{T}^{r}(X)$, and there is a canonical surjective $*$-homomorphism $\Lambda: \mathcal{N} \mathcal{T}(X) \rightarrow \mathcal{N} \mathcal{T}^{r}(X)$, see [16, Section 2].

The next result is implicit in [15], where it is formulated using the C^{*}-precategory picture of $\mathcal{N} \mathcal{T}^{r}(X)$ and $\mathcal{N} \mathcal{T}(X)$, see [15, Proposition 5.4], respectively [15, Corollary 6.5]. For the sake of completeness and easy reference we state it in a form suitable to the more familiar picture of $\mathcal{N} \mathcal{T}^{r}(X)$ viewed as the closure of the subalgebra spanned by monomials $l(\xi) l(\eta)^{*}$ for $\xi \in X_{p}, \eta \in$ $X_{q}, p, q \in P$ and similarly with $\mathcal{N} \mathcal{T}(X)$ as the closure of the subalgebra spanned by monomials $i_{X}(\xi) i_{X}(\eta)^{*}$. Denote by $d: X \rightarrow P$ the degree homomorphism of monoids so that the fibre over $p \in P$ is $X_{p}=d^{-1}(\{p\})$. By definition, the core subalgebra of $\mathcal{N} \mathcal{T}(X)$ is the fibre over the identity, namely

$$
B_{e}^{i_{X}}=\overline{\operatorname{span}}\left\{i_{X}(\xi) i_{X}(\eta)^{*} \mid \xi, \eta \in X, d(\xi)=d(\eta)\right\}
$$

and B_{e}^{l} of $\mathcal{N T}^{r}(X)$ as

$$
B_{e}^{l}=\overline{\operatorname{span}}\left\{l(\xi) l(\eta)^{*} \mid \xi, \eta \in X, d(\xi)=d(\eta)\right\} .
$$

Proposition 3.4. Let X be a compactly aligned product system of essential C^{*}-correspondences over a cancellative right LCM monoid P, where $X_{e}=A$. Then there is a faithful conditional expectation $E^{r}: \mathcal{N T}^{r}(X) \rightarrow B_{e}^{l}$ such that

$$
\begin{equation*}
E^{r}\left(\sum_{\xi, \eta \in F} l(\xi) l(\eta)^{*}\right)=\sum_{\{\xi \in F \mid d(\xi)=d(\eta)\}} l(\xi) l(\eta)^{*}, \tag{3.5}
\end{equation*}
$$

where F is a finite subset of $X=\bigcup_{p} X_{p}$.
Further, there is a conditional expectation $E: \mathcal{N} \mathcal{T}(X) \rightarrow B_{e}^{i_{X}}$ such that

$$
\begin{equation*}
E\left(\sum_{\xi, \eta \in F} i_{X}(\xi) i_{X}(\eta)^{*}\right)=\sum_{\{\xi \in F \mid d(\xi)=d(\eta)\}} i_{X}(\xi) i_{X}(\eta)^{*}, \tag{3.6}
\end{equation*}
$$

where F is a finite subset of $X=\bigcup_{p} X_{p}$.
Proof. A routine calculation shows that the Fock representation l of the product system X and the Fock representation \mathbb{L} of the C^{*}-precategory associated to X are related in the form

$$
\mathbb{L}\left(\Theta_{\xi, \eta}\right)=l(\xi) l(\eta)^{*}, \quad \xi \in X_{p}, \quad \eta \in X_{q}, \quad p, q \in P,
$$

where $\Theta_{\xi, \eta} \in \mathcal{K}\left(X_{q}, X_{p}\right)$, as prescribed by [16, Lemma 2.6]. Inserting this in [15, Equation (5.4)] gives the claim about E^{r}. Using the formula for E^{r} in the proof of [15, Corollary 6.5] gives the claim about E.

Theorem 3.5. (cf. [3, Theorem 5.1]) Assume that $X=\left\{X_{p}\right\}_{p \in P}$ is a compactly aligned product system of essential C^{*}-correspondences over a cancellative right LCM monoid P, with $X_{e}=A$, and consider the time evolution on $\mathcal{N} \mathcal{T}(X)$ defined by a homomorphism $N: P \rightarrow(0, \infty)$. For every $\beta \in \mathbb{R}$, the map $\left.\phi \mapsto \phi\right|_{A}$ defines a one-to-one correspondence between KMS_{β}-states on $\mathcal{N} \mathcal{T}(X)$ that factor through the conditional expectation E and the tracial states on A satisfying (1.1).

The proof follows the strategy laid down in [3, Section 5], which in itself follows by now classical ideas, see for example [23].

Lemma 3.6. Assume the hypotheses of Theorem 3.5. Let τ be a tracial state on A satisfying (1.1). Then there is a unique state ϕ_{0} on $B_{e}^{i x}$ such that

$$
\begin{equation*}
\phi_{0}\left(i_{X}(\xi) i_{X}(\eta)^{*}\right)=N(p)^{-\beta} \tau(\langle\eta, \xi\rangle) \text { for } \xi, \eta \in X_{p}, p \in P \tag{3.7}
\end{equation*}
$$

Proof. To get hold of ϕ_{0} we exploit the structure of $B_{e}^{i_{X}}$ as the norm closure of a nested family of subalgebras B_{J} similar to [3, Section 4], see also [7, Lemma 3.6]. More precisely, we recall that a quasi-lattice I is a partially ordered set such that for all $p, q \in I$, either p, q have a unique least common upper bound, denoted $p \vee q$, or have no common upper bound. The example from [3, Section 4] is that of a monoid in a quasi-lattice ordered pair. The important observation in [3, Lemma 4.2] is that the order structure alone, regardless of the monoid structure, allows to express the core C^{*}-subalgebra as $\overline{\bigcup_{F} B_{F}}$, where F run over the finite \vee-closed subsets of I and $B_{F}=\oplus_{p \in F} B_{p}$, with $B_{p}=i_{X}^{(p)}\left(\mathcal{K}\left(X_{p}\right)\right)$.

In our situation, for a right LCM monoid P we define an equivalence relation by $x \sim y$ if $y=x u$ for some invertible $u \in P^{*}$ and we denote the equivalence class of p by $[p]=p P^{*}$. The crux of the matter is that the quasi-lattice graded structure of the core and its dense subalgebra $\bigcup_{F} B_{F}$ exploited in [3, Lemma 4.2] is inherited by the set $P / \sim:=\{[p] \mid p \in P\}$ of equivalence classes. Indeed, as noticed in [15, Section 6], the set P / \sim is a quasi-lattice in the sense of [3, Section 4] for any right LCM monoid P. For each finite \vee-closed subset \tilde{F} of P / \sim we obtain a C^{*}-subalgebra

$$
B_{\tilde{F}}=\operatorname{span}\left\{i_{X}^{(p)}\left(\mathcal{K}\left(X_{p}\right)\right) \mid[p] \in \tilde{F}\right\}
$$

of $\mathcal{N} \mathcal{T}(X)$, see [15, Lemma 6.6]. The collection of finite \vee-closed ${ }^{1}$ subsets \tilde{F} of P / \sim forms a directed set, which we denote \mathcal{F}, and we have that

$$
B_{e}^{i x}=\overline{\bigcup_{\tilde{F} \in \mathcal{F}} B_{\tilde{F}}}
$$

by combining observations in the proof of Corollary 6.3 and of Theorem 6.1(b) from [15].
Thus we may carry out the construction of a positive linear functional ϕ_{0} given by $\oplus_{[p] \in P / \sim} \phi_{[p]}$ as in [3, Proposition 4.4 and section 5].

[^1]Proof. (Proof of Theorem 3.5). Let ϕ_{0} be the state on $B_{e}^{i_{X}}$ constructed in Lemma 3.6 from a tracial state τ on A satisfying condition (1.1). We claim that $\phi:=\phi_{0} \circ E$ satisfies the KMS condition, in which case we obtain surjectivity of the mapping in the statement of the theorem. To show the KMS_{β} condition, we claim that the calculations in the proof of [3, Theorem 5.1] are valid using the formula for the expectation E on $\mathcal{N} \mathcal{T}(X)$ that comes from the Fock space grading, without reference to an ambient group. Thus, with $a=i_{X}(\xi), \xi \in X_{p}$ and $b=i_{X}(\zeta) i_{X}(\eta)^{*}$, for $\zeta \in X_{q}, \eta \in X_{r}, p, q, r \in P$, we must show that $\phi(a b)=N(p)^{-\beta} \phi(b a)$. The case $p q=r$ is verbatim as in [3], but the case $p q \neq r$ requires some attention as we cannot form elements $p q^{-1} r$ and $q r^{-1} p$ in the absence of a group.

Assume that $p q \neq r$. Since $a b=i_{X}(\xi \zeta) i_{X}(\eta)^{*}$, it follows from (3.6) that $\phi(a b)=0$. Turning to $b a$, we rewrite this following the idea of the proof of [15, Proposition 2.10], thus we let $\eta=R \eta^{\prime}$ and $\xi=P \xi^{\prime}$ for $R \in \mathcal{K}\left(X_{r}\right), P \in \mathcal{K}\left(X_{p}\right), \eta^{\prime} \in X_{r}, \xi^{\prime} \in X_{p}$. Then

$$
b a=i_{X}(\zeta) i_{X}\left(\eta^{\prime}\right)^{*} i_{X}^{(r)}\left(R^{*}\right) i_{X}^{(p)}(P) i_{X}\left(\xi^{\prime}\right)
$$

By Nica covariance of i_{X} we have that $b a=0$ if $r P \cap p P=\emptyset$. Assume therefore that $r P \cap p P \neq \emptyset$. We have $r P \cap p P=s P$ with $s \in P$, and we let $p p^{\prime}=r r^{\prime}=s$ for unique p^{\prime}, r^{\prime} in P. Therefore $b a \in i_{X}\left(X_{q r^{\prime}}\right) i_{X}\left(X_{p^{\prime}}\right)^{*}$, and we must prove that $q r^{\prime} \neq p^{\prime}$, in which case we can conclude that $\phi(b a)=0$ by the definition of E. If $q r^{\prime}=p^{\prime}$, then $p q r^{\prime}=p p^{\prime}=r r^{\prime}$, and right cancellation in P would give $p q=r$, a contradiction.

Injectivity of the mapping $\left.\phi \mapsto \phi\right|_{A}$ follows because the restriction to $B_{e}^{i_{X}}$ of a KMS state is determined uniquely by the requirement (3.7).

4. Reduction of the positivity condition to atoms

Throughout this section we assume that P is a Noetherian left cancellative right LCM monoid, that $\left\{X_{p}\right\}_{p \in P}$ is a compactly aligned product system of C^{*}-correspondences over P with $X_{e}=A$, that $N: P \rightarrow(0, \infty)$ is a multiplicative homomorphism and that $\beta \in \mathbb{R}$. We also assume that τ is a tracial state of A satisfying the positivity condition for finite subsets of atoms:

$$
\begin{equation*}
\tau(a)+\sum_{\emptyset \neq U \subset J}(-1)^{|U|} N(\vee U)^{-\beta} \operatorname{Tr}_{\tau}^{\vee U}(a) \geq 0 \quad \text { for } a \in A_{+} \quad J \subset P_{a} \tag{4.1}
\end{equation*}
$$

The goal of the section is to show that, under an extra hypothesis on P, the positivity also holds for all finite subsets of $P \backslash\{e\}$, as in (1.1). This gives a version of Theorem 3.5 that is stronger because it only requires verification of the subcollection of inequalities arising from subsets of atoms, which is finite if P is finitely generated. We are motivated by the simplification obtained for right-angled Artin monoids in [3, Theorem 9.1].

The key property we require for the reduction to atoms is the finiteness of a tree that we construct, largely following the proof of [20, Lemma 4.2]. In the formal arguments we replace finite subsets J of P by finite lists of elements of P, in which repetitions are allowed. The reason is that even if the initial list has no repetitions, repetitions may appear already at the second step.
4.1. Positivity for finite lists in $P \cup\{\infty\}$. We will use sums over lists of elements in P instead of subsets of P., and it is also convenient to allow ∞ in our lists. So for each $n \in \mathbb{N}$ we consider the index set $I_{n}:=\{1,2, \ldots, n\}$ and define an n-list to be a function of the form $\lambda: I_{n} \rightarrow P \cup\{\infty\}$.
Lemma 4.1. Given a tracial state τ on A that satisfies (4.1), a list λ in $P \cup\{\infty\}$, and $\beta>0$, there is a tracial linear functional $a \mapsto Z(\lambda, \tau, a)$ defined for each $a \in A$ such that

$$
\begin{equation*}
Z(\lambda, \tau, a):=\sum_{U \subset I_{n}}(-1)^{|U|} N(\vee \lambda(U))^{-\beta} \operatorname{Tr}_{\tau}^{\vee \lambda(U)}(a), \quad a \in A, \tag{4.2}
\end{equation*}
$$

where we follow the convention that if $\lambda(U)$ is not a clique, then $\vee \lambda(U)=\infty$ and $N(\vee \lambda(U))^{-\beta}=0$.

Proof. When the subset J consists of a single atom, (4.1) is the assumption of Lemma 3.2(i), and then Lemma 3.2(ii) implies that $\operatorname{Tr}_{\tau}^{V \lambda(U)}$ is a tracial linear functional defined on all of A whenever $\vee \lambda(U) \in P$. When $\vee \lambda(U)=\infty$ it is irrelevant that $\operatorname{Tr}_{\tau}^{\vee \lambda(U)}(a)$ is not defined because then the corresponding coefficient vanishes. Hence $Z(\lambda, \tau, a)$ is well-defined and the function $a \mapsto Z(\lambda, \tau, a)$ is a tracial bounded linear functional on A.

For each list λ, we let $\mathrm{Cl}_{\lambda}:=\left\{U \subset I_{n}: \lambda(U) \in \mathrm{Cl}(P)\right\}$ be the collection of cliques in λ, explicitly, this is the collection of subsets of I_{n} on which λ has an upper bound in P. Since the terms associated to non-cliques vanish, we have

$$
Z(\lambda, \tau, a)=\sum_{U \in \mathrm{Cl}_{\lambda}}(-1)^{|U|} N(\vee \lambda(U))^{-\beta} \operatorname{Tr}_{\tau}^{\vee \lambda(U)}(a),
$$

where the sums are over over cliques or over lists, indistinctly.
If $J \subset P$ is a set with n elements, we replace it by a list $\lambda: I_{n} \rightarrow P$ with $\lambda\left(I_{n}\right)=J$ and write $Z(\lambda, \tau, a)$ as a sum over subsets of P. Again, the sum only depends on the part of the range of the list that lies in P, and terms corresponding to non-cliques vanish, that is,

$$
Z(\lambda, \tau, a)=\sum_{K \subset \lambda(I) \cap P}(-1)^{|K|} N(\vee K)^{-\beta} \operatorname{Tr}_{\tau}^{\vee K}(a)=\sum_{K \in \mathrm{Cl}(\lambda(I))}(-1)^{|K|} N(\vee K)^{-\beta} \operatorname{Tr}_{\tau}^{\vee K}(a) .
$$

We see next that multiples, repetitions, and invertible elements in a list can be ignored as far as $Z(\lambda, \tau, a)$ is concerned.

Lemma 4.2. Suppose $\lambda: I_{n} \rightarrow P$ is a list and assume $\lambda(i) \leq \lambda(j)$ for some i and j with $i \neq j$. Denote by $\hat{\lambda}$ the list obtained by restricting λ to $I_{n} \backslash\{j\}$. Then $Z(\lambda, \tau, a)=Z(\hat{\lambda}, \tau, a)$. In particular if $\lambda\left(I_{n}\right) \cap P^{*} \neq \emptyset$, then $Z(\lambda, \tau, a)=0$ for all a.

Proof. Suppose $\lambda(i) \leq \lambda(j)$ for $i, j \in I_{n}$ with $i \neq j$. The λ-cliques $U \subset I_{n}$ that contain j fall into two classes, namely those that contain i and those that do not. The operation of 'removing i ' establishes a bijection of the first class onto the second one, reducing the cardinality of the clique by one but leaving the least upper bound unchanged. This changes the sign of the corresponding summand of $Z(\lambda, \tau, a)$, but not its absolute value, so summands paired this way cancel each other out.

If we assume now $\lambda(i) \in P^{*}$, then $\lambda(i) \leq \lambda(j)$ for every $j \in I_{n}$, and we may remove successively each $\lambda(j)$ for $j \neq i$ from λ, finally arriving at $Z(\lambda, \tau, a)=Z(\{i\}, \tau, a)$ which is easily seen to be zero because the only two cliques are \emptyset and $\{i\}$, which have opposite signs and the same absolute value $\tau(a)$.
Definition 4.3. A list $\lambda: I_{n} \rightarrow P \cup\{\infty\}$ will be called a leaf if either $\lambda\left(I_{n}\right) \subset P_{a} \cup\{\infty\}$ or $\lambda\left(I_{n}\right) \cap P^{*} \neq \emptyset$.

Next we define an iteration step. Let λ be a list in $P \cup\{\infty\}$. When λ is not a leaf, let i be the smallest number in $\{1,2, \ldots, n\}$ for which $\lambda(i)=p q$ with $p, q \in P \backslash P^{*}$ (here we may assume without loss of generality that p is a generator) and define two new lists, λ_{1} and λ_{2}, in $P \cup\{\infty\}$ as follows.

$$
\lambda_{1}(j):=\left\{\begin{array}{ll}
\lambda(j) & \text { if } j \neq i \tag{4.3}\\
p & \text { if } j=i ;
\end{array} \quad \lambda_{2}(j):= \begin{cases}p^{-1}(p \vee \lambda(j)) & \text { if } p \vee \lambda(j)<\infty \\
\infty & \text { if } p \vee \lambda(j)=\infty .\end{cases}\right.
$$

In English: the list λ_{1} is obtained from λ by simply replacing the $i^{\text {th }}$ term $p q$ by p and leaving the rest of the terms unchanged, and the list λ_{2} is obtained by replacing every term in λ by its image under the transformation $x \mapsto p^{-1}(x \vee p)$ (here we let $p \vee x$ be any choice of least common
upper bound of p and x if there is one and ∞ if there is none). Notice that, in particular, we may choose $\lambda_{2}(i)=p^{-1}(p \vee p q)=q$.

Clearly $\lambda_{1}(j)=\infty$ if and only if $\lambda(j)=\infty$, and $\lambda_{2}(j)=\infty$ if $\lambda(j)=\infty$, but it is certainly possible to have $\lambda_{2}(j)=\infty$ with $\lambda(j)<\infty$.

Lemma 4.4. Let P be a right LCM monoid. Let $\lambda: I_{n} \rightarrow P \cup\{\infty\}$ be a list that is not a leaf and let $i \in I$ be the first index such that $\lambda(i)=p q$ for $p \in P_{a}$ and $q \in P \backslash P^{*}$. For each $U \subset I_{n}$ we have
(1) if $\lambda(U)$ is a clique, then so is $\lambda_{1}(U)$, and

$$
\bigvee \lambda_{1}(U) \leq \bigvee \lambda(U)
$$

(2) $\lambda(U) \cup\{p\}$ is a clique if and only if $\lambda_{2}(U)$ is a clique, and

$$
\bigvee \lambda(U) \vee p=p \cdot \bigvee \lambda_{2}(U)
$$

(3) when $i \in U$ we have that $\lambda_{1}(U)$ is a clique if and only if $\lambda_{2}(U \backslash\{i\})$ is a clique, and

$$
\bigvee \lambda_{1}(U)=p \cdot \bigvee \lambda_{2}(U \backslash\{i\})
$$

Proof. Suppose λ is not a leaf and $\lambda(i)=p q$ as in the statement. Part (1) can be split into two cases. First assume $i \notin U$; then obviously $\lambda(U)=\lambda_{1}(U)$, and the claim follows. Next assume $i \in U$; then clearly $\lambda(i) P=p q P \subset p P=\lambda_{1}(i) P$, and thus $\bigcap_{j \in U} \lambda(j) P \subset \bigcap_{j \in U} \lambda_{1}(j) P$. This gives the inequality in part (1). Cliques are preserved because $\bigvee \lambda(U)<\infty$ implies $\bigcap_{j} \lambda_{1}(j) P \neq \emptyset$.

For part (2), notice that

$$
\begin{equation*}
p \bigcap_{j \in U} \lambda_{2}(j) P=\bigcap_{j \in U} p \lambda_{2}(j) P=\bigcap_{j \in U}(p \vee \lambda(j)) P=\bigcap_{j \in U}(p P \cap \lambda(j) P), \tag{4.4}
\end{equation*}
$$

Interpreting this for sets of right LCMs, we see that

$$
p \cdot \bigvee \lambda_{2}(U)=\bigvee p \lambda_{2}(U)=p \vee \bigvee \lambda(U)=\bigvee(\lambda(U) \cup\{p\})
$$

which proves the second assertion.
For part (3), we notice that since $\lambda_{1}(j)=\lambda(j)$ for $j \in U \backslash\{i\}$, the intersection over $U \backslash\{i\}$ can be transformed into one over U; specifically,

$$
\begin{equation*}
p \bigcap_{j \in U \backslash\{i\}} \lambda_{2}(j) P=\left(\bigcap_{j \in U \backslash\{i\}} p \lambda_{2}(j) P\right) \cap p P=\bigcap_{j \in U \backslash\{i\}}(p P \cap \lambda(j) P) \cap \lambda_{1}(i) P=\bigcap_{j \in U} \lambda_{1}(j) P, \tag{4.5}
\end{equation*}
$$

so the sets of right LCMs satisfy

$$
p \cdot \bigvee \lambda_{2}(U \backslash\{i\})=\bigvee \lambda_{1}(U)
$$

That cliques are preserved both ways in cases (2) and (3) is easy to see from (4.4) and (4.5).
Remark 4.5. In some cases the map $\lambda \mapsto \lambda_{1}$ can send an unbounded list to a clique. For an easy example consider $P=\mathbb{F}_{2}^{+}$, the free monoid on two generators a and b. Then the list $\lambda=\left(a b, a^{2}\right)$ is unbounded, but $\lambda_{1}=\left(a, a^{2}\right)$ is a clique.

The map $\lambda \mapsto \lambda_{1}$ does not introduce new invertibles or new infinites. On the other hand, $\lambda \mapsto \lambda_{2}$ has the capacity to generate new invertibles and new infinites.

Lemma 4.6. Let X be an essential C^{*}-correspondence over A. Suppose $\tau_{1}, \ldots, \tau_{n}$ are positive finite traces on A such that $\operatorname{Tr}_{\tau_{i}}^{X}$ is finite for each $i=1, \ldots, n$, and let $c_{1}, \ldots, c_{n} \in \mathbb{R}$. If $\sum_{i=1}^{n} c_{i} \tau_{i}$ is positive on A, then so is $\sum_{i=1}^{n} c_{i} \operatorname{Tr}_{\tau_{i}}^{X}(\cdot)$.

Proof. By the linearity properties of the induced trace we have

$$
\sum_{i=1}^{n} c_{i} \operatorname{Tr}_{\tau_{i}}^{X}(a)=\operatorname{Tr}_{\sum_{i=1}^{X} c_{i} \tau_{i}}^{X}(a) \quad \text { for all } a \in A_{+} .
$$

The result follows because inducing preserves positivity.
Proposition 4.7. Suppose P is a Noetherian left cancellative right LCM monoid, that $\left\{X_{p}\right\}_{p \in P}$ is a compactly aligned product system of C^{*}-correspondences over P with $X_{e}=A$, that $N: P \rightarrow(0, \infty)$ is a multiplicative homomorphism and that $\beta \in \mathbb{R}$. Assume that τ is a tracial state of A satisfying the positivity condition (4.1) for finite subsets of atoms.

If λ, λ_{1}, and λ_{2} are lists, with $\lambda(i)=p q$ as in (4.3), then

$$
Z(\lambda, \tau, a)=Z\left(\lambda_{1}, \tau, a\right)+\frac{1}{N(p)^{\beta}} \sum_{U \subset I_{n}}(-1)^{|U|} N\left(\vee \lambda_{2}(U)\right)^{-\beta} \operatorname{Tr}_{F_{V \lambda_{2}(U)}(\tau)}^{p}(a) \quad \text { for all } a \in A_{+} .
$$

Proof. Let $i \in I_{n}$ be given as in (4.3). We compute the difference $Z(\lambda, \tau, a)-Z\left(\lambda_{1}, \tau, a\right)$ for $a \in A_{+}$. Notice that the terms corresponding to each clique $U \subset I_{n}$ with $i \notin U$ cancel, because then $\lambda(U)=\lambda_{1}(U)$. So we only need to write terms with $i \in U \subset I_{n}$. Therefore

$$
Z(\lambda, \tau, a)-Z\left(\lambda_{1}, \tau, a\right)=\sum_{i \in U \subset I_{n}}(-1)^{|U|}\left(N(\vee \lambda(U))^{-\beta} \operatorname{Tr}_{\tau}^{\vee \lambda(U)}(a)-N\left(\vee \lambda_{1}(U)\right)^{-\beta} \operatorname{Tr}_{\tau}^{\vee \lambda_{1}(U)}(a)\right)
$$

Since $i \in U$, so that $\lambda(U) \cup\{p\}=\lambda(U)$, Lemma 4.4(2) gives $N(\vee \lambda(U))=N(p) N\left(\vee \lambda_{2}(U)\right)$ and Lemma 4.4(3) gives $N\left(\vee \lambda_{1}(U)\right)=N(p) N\left(\vee \lambda_{2}(U \backslash\{i\})\right)$, so
$Z(\lambda, \tau, a)-Z\left(\lambda_{1}, \tau, a\right)=\sum_{i \in U \subset I_{n}} \frac{(-1)^{|U|}}{N(p)^{\beta}}\left(N\left(\vee \lambda_{2}(U)\right)^{-\beta} \operatorname{Tr}_{\tau}^{\vee \lambda(U)}(a)-N\left(\vee \lambda_{2}(U \backslash\{i\})\right)^{-\beta} \operatorname{Tr}_{\tau}^{\vee \lambda_{1}(U)}(a)\right)$.
When we replace $U \backslash\{i\}$ by V, which is a set that ranges over the subsets of $I_{n} \backslash\{i\}$, and we adjust the sign to take into account that $|V|=|U|-1$, we get

$$
\begin{align*}
& Z(\lambda, \tau, a)-Z\left(\lambda_{1}, \tau, a\right)=\frac{1}{N(p)^{\beta}}\left(\sum_{i \in U \subset I_{n}}(-1)^{|U|} N\left(\vee \lambda_{2}(U)\right)^{-\beta} \operatorname{Tr}_{\tau} \bigvee \lambda(U)\right. \tag{4.6}\\
& \left.\quad+\sum_{i \notin V \subset I_{n}}(-1)^{|V|} N\left(\vee \lambda_{2}(V)\right)^{-\beta} \operatorname{Tr}_{\tau}^{\lambda_{1}(i) \vee \vee \lambda_{1}(V)}(a)\right) .
\end{align*}
$$

Recall now that by (3.2) we have $\operatorname{Tr}_{\tau}^{\vee} \lambda^{\lambda(U)}=\operatorname{Tr}_{F_{V \lambda_{2}(U)}(\tau)}^{p}$ for each U containing i and $\operatorname{Tr}_{\tau}^{\lambda_{1}(i) \vee \vee \lambda(V)}=$ $\operatorname{Tr}_{F_{V \lambda_{2}(V)}(\tau)}^{p}$ for each V that does not contain i. Thus we may collect the two sums from (4.6) into the single sum, completing the proof.

By recursion, the maps $\lambda \mapsto \lambda_{1}$ and $\lambda \mapsto \lambda_{2}$ generate a binary tree rooted at λ. This is similar to the proof of [20, Theorem 4.8], but here we use the following tree with nodes indexed by lists,

At level k we have nodes indexed by λ_{ω}, where ω is a word of length k in the free monoid $\mathbb{F}^{+}\{1,2\}$ generated by the symbols 1 and 2 . The level $k+1$ is generated by splitting each node λ_{ω} into two new nodes $\lambda_{\omega 1}:=\left(\lambda_{\omega}\right)_{1}$ and $\lambda_{\omega 2}:=\left(\lambda_{\omega}\right)_{2}$ defined according to the recursive step (4.3). As a matter of notation, whenever ω is a finite or infinite word with entries in $\{1,2\}$, we denote the initial subword of length k by $\omega[1, k]$.

According to Definition 4.3 a node λ_{ω} is a leaf if $\lambda_{\omega}(j) \in P^{*}$ for some j, or if for every $j \in I_{n}$ there is no notrivial factorisation of $\lambda_{\omega}(j)$. We are interested in a branching process that stops when $Z\left(\lambda_{\omega}, \tau, a\right) \geq 0$, and this will be ensured either by the positivity assumption for lists consisting of atoms and infinities, or by Lemma 4.2 for lists that have an invertible element, because then $Z(\lambda, \tau, a)=0$. Thus we will say that a branch is a finite or infinite word ω on the symbols $\{1,2\}$ that starts at the root λ and either ends at the first node such that $\lambda_{\omega[1, k]}$ is a leaf, or else does not end at all, should such a node not exist.
Theorem 4.8. Under the assumptions of Proposition 4.7, suppose that the tree $\left(\lambda_{\omega}\right)$ constructed above is finite for every list λ. Then reduction of positivity to atoms holds for P . Specifically, a tracial state τ on A satisfies (1.1) if and only if it satisfies the weaker condition (4.1).
Proof. Suppose that τ is a tracial state of A that satisfies the positivity condition (4.1) for subsets of atoms. Let J be a subset of P and take a list λ with range J. The left hand side of (1.1) then equals $Z(\lambda, \tau, a)$ so it suffices to show that $Z(\lambda, \tau, a) \geq 0$ for every $a \in A^{+}$.

Assume that λ is a list in P such that the positivity condition (1.1) holds for both λ_{1} and λ_{2} for every $a \in A$. Notice that

$$
Z\left(\lambda_{2}, \tau, \cdot\right)=\sum_{U \subset I_{n}}(-1)^{|U|} N\left(\vee \lambda_{2}(U)\right)^{-\beta} \operatorname{Tr}_{\tau}^{\vee \lambda_{2}(U)}=\sum_{U \subset I_{n}}(-1)^{|U|} N\left(\vee \lambda_{2}(U)\right)^{-\beta}\left(F_{\vee \lambda_{2}(U)} \tau\right)
$$

is a linear combination of the finite positive traces $F_{V \lambda_{2}(U)} \tau$. Since $Z\left(\lambda_{2}, \tau, \cdot\right) \geq 0$ by assumption, Lemma 4.6 implies that $\frac{1}{N(p)^{\beta}} \sum_{U \subset I_{n}}(-1)^{|U|} N\left(\vee \lambda_{2}(U)\right)^{-\beta} \operatorname{Tr}_{F_{V \lambda_{2}(U)}(\tau)}^{p}(a) \geq 0$, and then Proposition 4.7 shows that positivity holds for λ.

Hence, when positivity fails for a list λ, then it must also fail for either λ_{1} or λ_{2}, and iteration of this process, say, choosing the first edge whenever positivity fails for both, generates a branch of the tree of λ such that positivity fails at every node. Since the tree of λ is finite by assumption, this branch must end at a leaf, on which positivity also fails. But this is a contradiction, because infinities in a list do not affect the sum, invertible elements cause the function Z to vanish, and if the list consists only of atoms, then the value is nonnegative by assumption (4.1).

As an immediate consequence we obtain a stronger version of Theorem 3.5.
Corollary 4.9. If in addition to the assumptions of Theorem 3.5 the tree of every list is finite, then $\left.\phi \mapsto \phi\right|_{A}$ is a one-to-one correspondence between KMS_{β}-states on $\mathcal{N} \mathcal{T}(X)$ that factor through the conditional expectation E and the tracial states on A satisfying (4.1).
4.2. The directed case. If the right $L C M$ monoid P is directed (hence a semi-lattice), in the sense that $p P \cap q P \neq \emptyset$ for every $p, q \in P$, we can actually prove that the tree $\left(\lambda_{\omega}\right)$ is finite.

Proposition 4.10. Suppose P is a Noetherian, right LCM monoid such that $x P \cap y P \neq \emptyset$ for every pair $x, y \in P$, and let $\lambda: I_{n} \rightarrow P$ be a list of elements of P. Then the tree $\left(\lambda_{\omega}\right)$ is finite, and reduction of positivity to atoms holds for P.

Proof. By König's lemma, the tree is infinite if and only if it has an infinite branch. By definition, an infinite branch consists of an infinite sequence $\lambda_{\omega}=\left(\lambda_{\omega[1, k]}\right)_{k \in \mathbb{N}}$ of nodes associated to an infinite word ω over $\{1,2\}$ such that for every level k the set $\lambda_{\omega[1, k]}\left(I_{n}\right)$ contains no invertible elements and has at least one element with a nontrivial factorisation. We will show that there are no such infinite branches.

We claim first that a branch ω can only have finitely many 2's. Aiming for a contradiction, we assume ω has infinitely many 2's, occurring precisely as $\omega_{k_{j}}$ for an infinite increasing sequence $\left(k_{j}\right)_{j \in \mathbb{N}}$, while the rest of the ω_{i} are equal to 1 . Thus, $\omega\left[1, k_{1}-1\right]$ is a string consisting of $k_{1}-1 \geq 0$ symbols equal to 1 , followed by $\omega_{k_{1}}=2$ (the first 2 in ω) followed by the string $\omega\left[k_{1}+1, k_{2}-1\right]$ of $k_{2}-k_{1}-1 \geq 0$ symbols equal to 1 , followed $\omega_{k_{2}}$ (the second 2 in ω), and so on. Since $\omega(j)=1$ for $j \leq k_{1}-1$. Lemma 4.4(1) applied $k_{1}-1$ times gives

$$
\vee \lambda=\vee \lambda_{\omega[1]} g_{1}^{\prime}=\left(\vee \lambda_{\omega[1,2]} g_{2}^{\prime}\right) g_{1}^{\prime}=\cdots=\left(\vee \lambda_{\omega\left[1, k_{1}-1\right]} g_{k_{1}-1}^{\prime}\right) g_{k_{1}-2}^{\prime} \ldots g_{2}^{\prime} g_{1}^{\prime}
$$

and we set $g_{k_{1}}=g_{k_{1}-1}^{\prime} \ldots g_{2}^{\prime} g_{1}^{\prime}$, where $g_{k_{1}}=e$ in case $k_{1}=1$. Since $\omega_{k_{1}}=2$, Lemma 4.4(2) applied to the list $\lambda_{\omega\left[1, k_{1}-1\right]}$ with $U=I_{n}$ gives

$$
\vee \lambda_{\omega\left[1, k_{1}-1\right]}=p_{k_{1}}\left(\vee\left(\lambda_{\omega\left[1, k_{1}-1\right]}\right)_{2}\right)=p_{k_{1}}\left(\vee \lambda_{\omega\left[1, k_{1}\right]}\right)
$$

for some generator $p_{k_{1}} \in P_{a}$. Hence, writing $d_{k}:=\vee \lambda_{\omega[1, k]}$ for $k=1,2, \ldots$, we have shown that

$$
\begin{equation*}
d_{0}=\vee \lambda=d_{k_{1}-1} g_{k_{1}}=p_{k_{1}} d_{k_{1}} g_{k_{1}} \tag{4.7}
\end{equation*}
$$

Now, let $k_{2}>k_{1}$ be the second occurrence of a 2 in ω. If $k_{2}=k_{1}+1$, set $g_{k_{2}}=e$. Otherwise, by Lemma $4.4(1)$ applied $k_{2}-k_{1}-1$ times and by Lemma 4.4 applied at the k_{2} step we find $g_{j}^{\prime} \in P$ for $j=k_{1}+1, \ldots, k_{2}-1$ and a generator $p_{k_{2}} \in P_{a}$ such that

$$
\vee \lambda_{\omega\left[1, k_{2}-1\right]}=p_{k_{2}}\left(\vee \lambda_{\omega\left[1, k_{2}\right]}\right)
$$

and

$$
\vee \lambda_{\omega\left[1, k_{1}\right]}=\vee \lambda_{\omega\left[1, k_{2}-1\right]} g_{k_{2}-1}^{\prime} \ldots g_{k_{1}+1}^{\prime}
$$

Putting $g_{k_{2}}=g_{k_{2}-1}^{\prime} \ldots g_{k_{1}+1}^{\prime}$, gives

$$
d_{k_{1}}=d_{k_{2}-1} g_{k_{2}}=p_{k_{2}} d_{k_{2}} g_{k_{2}}
$$

Inserting this in (4.7) we get

$$
d_{0}=p_{k_{1}}\left(p_{k_{2}} d_{k_{2}} g_{k_{2}}\right) g_{k_{1}}
$$

Continuing this way we get two sequences $\left\{p_{k_{m}}\right\}$ in $P \backslash P^{*}$ and $\left\{g_{k_{m}}\right\}$ in P such that

$$
d_{0}=p_{k_{1}} \ldots p_{k_{m}} d_{k_{m}+1} g_{k_{m}} \ldots g_{k_{1}}
$$

Thus $\left(p_{k_{1}}, p_{k_{1}} p_{k_{2}}, p_{k_{1}} p_{k_{2}} p_{k_{3}}, \ldots\right)$ is a strictly increasing sequence of left divisors of d_{0}, which contradicts the assumption that P is Noetherian and completes the proof of the claim.

It follows that there exists \bar{k} such that $\omega[k]=1$ for all $k \geq \bar{k}$. We will show that this leads to a contradiction. Notice that, by definition, the process defining λ_{1} will exhaust the factorisation of $\lambda_{\omega_{[1, \bar{k}]}}(1)$ before moving onto that of $\lambda_{\omega_{[1, \bar{k}]}}(2)$, and so on. Continuing, we see that the j-th term $\lambda_{\omega_{[1, \bar{k}]}}(j)$ of the list remains constant down the branch until it is changed for the first time after the initial $j-1$ terms have been replaced by generators, admitting no further nontrivial factorisations. Each step in the λ_{1}-process requires a nontrivial factorisation of exactly one of the terms in the list at that level, that is, at the $(\bar{k}+y)$-th step, there exist exactly one $j \in I_{n}, p_{y} \in P_{a}$ and $q_{y} \in P \backslash P^{*}$
such that $\lambda_{\omega_{[1, \bar{k}+y]}}(j)=p_{y} q_{y}$ and $\lambda_{\omega_{[1, \bar{k}+y+1]}}=p_{y}$. The other terms in the list remain unchanged. Since the list is finite, the λ_{1}-process must stop after finitely many steps. This contradicts the assumption that ω is an infinite branch, proving that the tree has to be finite. The last assertion now follows by Theorem 4.8

The question of which monoids have reduction of positivity to subsets of atoms was raised in the introduction of [3]. As a corollary we can add Artin monoids of finite type to that class.
Corollary 4.11. Reduction of positivity to generators holds for Artin monoids of finite type.
Proof. The result follows from Proposition 4.10 because Artin monoids of finite type are Noetherian, directed, right LCM monoids.
4.3. Right-angled Artin monoids. Our methods also recover the fact that reduction of positivity holds for right-angled Artin monoids, cf. [3, Theorem 9.1].
Proposition 4.12. Suppose P is a right-angled Artin monoid, and let $\lambda: I_{n} \rightarrow P$ be a list of elements of P. Then the tree $\left(\lambda_{\omega}\right)$ is finite, and reduction of positivity to generators holds for P.
Proof. Let $\omega \in \mathbb{F}^{+}\{1,2\}$, and suppose that $\lambda_{\omega[1, k]}\left(I_{n}\right)$ is not a leaf for some $k \in \mathbb{N}$. Recall from the definition of λ_{1} and λ_{2} in (4.3) that when we factor the element $\lambda(i)=s q$ in $\lambda_{\omega}\left(I_{n}\right)$, we choose s to be a generator, that is $s \in P_{a}$.

Let $\ell: P \rightarrow \mathbb{N}$ be the normalized length function on P (see Remark 2.4). We claim that $\lambda_{\omega[1, k+1]}(j)$ either satisfies $\lambda_{\omega[1, k+1]}(j)=\infty$ or else $\ell\left(\lambda_{\omega[1, k+1]}(j)\right) \leq \ell\left(\lambda_{\omega[1, k]}(j)\right)$ for all $j=1, \ldots, n$, and that the inequality is strict at least for the subindex i where the factorisation occurs. Indeed, the length reduction clearly holds in λ_{1}-step, that is, when $\omega_{k+1}=1$, because the length of the element $\lambda_{\omega[1, k]}(i)$ being factorised goes down to 1 , while the lengths of all the other elements remain the same. Next we show that the length reduction also holds in the case of a λ_{2}-step, that is, when $\omega_{k+1}=2$. From [3, Lemma 9.2], we know that $s \vee p \in\{p, s p, s, \infty\}$ for all $p \in P$ and $s \in P_{a}$. Thus $s^{-1}(s \vee p) \in\left\{s^{-1} p, p, e, \infty\right\}$, where the case $s^{-1} p$ only occurs if s is an initial letter in some expression of p, in which case we have that $s^{-1} p \in P$ with $\ell\left(s^{-1} p\right)<\ell(p)$. From this it becomes clear that either $\lambda_{\omega[1, k+1]}(j)=\infty$ or

$$
\lambda_{\omega[1, k+1]}(i)=\ell\left(s^{-1}(p \vee s)\right) \leq \ell(p)=\ell\left(\lambda_{\omega[1, k]}(i)\right),
$$

for all $i=1, \ldots, n$. In this case the term $\lambda_{\omega[1, k]}(i)$ being factorised goes down in length by 1 . This finishes the proof of our claim.

If we now account for the total length $\sum_{j} \ell(\lambda(j))$ using the convention that $\ell(e)=\ell(\infty)=0$, we see that $k \mapsto \sum_{j} \ell\left(\lambda_{\omega[1, k]}(j)\right)$ is a strictly decreasing sequence with values in the positive integers. This excludes the possibility of an infinite branch, and thus the tree $\left(\lambda_{\omega}\right)$ is finite by König's lemma.

5. Reduction to minimal elements

In this section we show that for all weak quasi-lattice ordered groups (G, P) with P Noetherian there is a reduction of the positivity criterion (1.1) to a system of inequalities associated to subsets of a set $P_{\text {inf }}$, see the definition below, that contains the atoms but may have other elements, although in some special cases we can verify that $P_{\mathrm{inf}}=P_{a}$. The definition of the set P_{inf} is motivated by [20, Definition 4.9].
Definition 5.1. Suppose (G, P) is a weak quasi-lattice ordered group with set of atoms P_{a}. Set $P_{1}:=P_{a}$ and, recursively, $P_{n}:=P_{a}^{-1} P_{n-1} \cap P=\left\{x^{-1} p \mid x \in P_{a}, p \in P_{n} \cap x P\right\}$ for each $n \geq 2$; then define the minimal set

$$
P_{\mathrm{inf}}:=\bigcup_{n \in \mathbb{N}} P_{n} .
$$

Lemma 5.2. The minimal set P_{inf} is the smallest subset of P that contains P_{a} and is closed under the operations $p \mapsto x^{-1}(x \vee p)$ for $x \in P_{a}$.
Proof. Clearly the set $P_{\text {inf }}$ contains P_{a} and is closed under $p \mapsto x^{-1}(x \vee p)$, and if $Q \subset P$ contains P_{a} and is closed under $p \mapsto x^{-1}(x \vee p)$, then it obviously contains each of the P_{n}, and hence P_{inf}.

Recall that Ω_{K} denotes the intersection $\bigcap_{k \in K}(P \backslash k P)$ for each finite subset $K \subset P$; and set $\Omega_{\emptyset}=P$. Given a nonempty subset R of P, we define \mathcal{A}_{R} to be the collection of all finite (or empty) disjoint unions of sets $p \Omega_{K}$:

$$
\begin{equation*}
\mathcal{A}_{R}:=\left\{\bigsqcup_{j=1}^{n} p_{j} \Omega_{K_{j}}: p_{j} \in P \text { and } K_{j} \subset R \text { finite or empty }\right\} . \tag{5.1}
\end{equation*}
$$

By convention $\emptyset \in \mathcal{A}_{R}$, arising from the empty union. It is apparent that if $R \subset T \subset P$, then $\mathcal{A}_{R} \subset \mathcal{A}_{T}$. Our strategy for proving reductions of (1.1) to a smaller set of inequalities based on $P_{\text {inf }}$ is to show that when P is Noetherian, $\mathcal{A}_{P_{\text {inf }}}$ is itself an algebra of subsets of P, namely the algebra \mathcal{B}_{P} from Lemma 2.5.

Lemma 5.3. The collection $\mathcal{A}_{P_{a}}=\left\{\sqcup_{j=1}^{n} p_{j} \Omega_{K_{j}}: p_{j} \in P\right.$ and $K_{j} \subset P_{a}$ finite or empty $\}$ contains the set $p P$ and its complement $P \backslash p P$ for every $p \in P$.
Proof. Let $p \in P$. Setting $K=\emptyset$ in the definition shows that $p P=p \Omega_{\emptyset} \in \mathcal{A}_{P_{a}}$. Suppose now that $p=s_{i_{1}} \ldots s_{i_{k}}$ is an expression for p in terms of atoms.

Then we have

$$
\begin{aligned}
P \backslash p P & =\left(P \backslash s_{i_{1}} P\right) \sqcup\left(s_{i_{1}} P \backslash s_{i_{1}} s_{i_{2}} P\right) \sqcup \ldots \sqcup\left(s_{i_{1}} \ldots s_{i_{k-1}} P \backslash s_{i_{1}} \ldots s_{i_{k}} P\right) \\
& =\left(P \backslash s_{i_{1}} P\right) \sqcup s_{i_{1}}\left(P \backslash s_{i_{2}} P\right) \sqcup \ldots \sqcup s_{i_{1}} \ldots s_{i_{k-1}}\left(P \backslash s_{i_{k}} P\right),
\end{aligned}
$$

which is in $\mathcal{A}_{P_{a}}$ by definition.
Lemma 5.4. Let (G, P) be a weak quasi-lattice ordered group with P Noetherian. Then $\mathcal{A}_{P_{\mathrm{inf}}}$ is the algebra \mathcal{B}_{P}.
Proof. By [3, Lemma 2.4] it suffices to prove that $\Omega_{K} \in \mathcal{A}_{P_{\text {inf }}}$ for every finite subset $K=\left\{q_{1}, \ldots, q_{n}\right\}$ of P. We do this by a double induction argument: for an arbitrary n, we first apply induction on the number of atoms in q_{i}, and then on k, the cardinality of $K \cap P$.

Suppose first $K=\left\{q_{1}, \ldots, q_{n}\right\}$ with $q_{1} \in P$ and $q_{2}, \ldots, q_{n} \in P_{\text {inf }}$. We use induction on the number of atoms in a factorisation of q_{1}. If q_{1} is an atom then $q_{1} \in P_{\mathrm{inf}}$, then Ω_{K} is in $\mathcal{A}_{P_{\mathrm{inf}}}$ by definition. Assume now that $\Omega_{K} \in \mathcal{A}_{P_{\text {inf }}}$ for all K as above in which $q_{1} \in P$ is a product of at most N atoms, and let $q \in P$ be a product of $N+1$ atoms, so that $q=s_{1} q^{\prime}$ for $s_{1} \in P_{a}$ and q^{\prime} a product of N atoms. Since $\Omega_{q}=\left(P \backslash s_{1} P\right) \sqcup s_{1}\left(P \backslash q^{\prime} P\right)$, we have

$$
\begin{equation*}
\Omega_{\left\{q, q_{2}, \ldots, q_{n}\right\}}=\left[\left(P \backslash s_{1} P\right) \sqcup s_{1}\left(P \backslash q^{\prime} P\right)\right] \cap \Omega_{\left\{q_{2}, \ldots, q_{n}\right\}}=\Omega_{\left\{s_{1}, q_{2}, \ldots, q_{n}\right\}} \sqcup s_{1}\left(P \backslash q^{\prime} P\right) \cap \Omega_{\left\{q_{2}, \ldots, q_{n}\right\}} . \tag{5.2}
\end{equation*}
$$

By definition $\Omega_{\left\{s_{1}, q_{2}, \ldots, q_{n}\right\}} \in \mathcal{A}_{P_{\text {inf }}}$, so we only need to show that $s_{1}\left(P \backslash q^{\prime} P\right) \cap \Omega_{\left\{q_{2}, \ldots, q_{n}\right\}} \in \mathcal{A}_{P_{\mathrm{inf}}}$. We rewrite this intersection as

$$
\begin{align*}
s_{1}\left(P \backslash q^{\prime} P\right) \cap \Omega_{\left\{q_{2}, \ldots, q_{n}\right\}} & =s_{1}\left(P \backslash q^{\prime} P\right) \cap\left(s_{1} P \backslash q_{2} P\right) \cap \cdots \cap\left(s_{1} P \backslash q_{n} P\right) \tag{5.3}\\
& =s_{1}\left(P \backslash q^{\prime} P\right) \cap\left(s_{1} P \backslash\left(s_{1} \vee q_{2}\right) P\right) \cap \cdots \cap\left(s_{1} P \backslash\left(s_{1} \vee q_{n}\right) P\right) \\
& =s_{1}\left[\left(P \backslash q^{\prime} P\right) \cap\left(P \backslash s_{1}^{-1}\left(s_{1} \vee q_{2}\right) P\right) \cap \cdots \cap\left(P \backslash s_{1}^{-1}\left(s_{1} \vee q_{n}\right) P\right)\right] .
\end{align*}
$$

By the definition of $P_{\text {inf }}$ we have that $s_{1}^{-1}\left(s_{1} \vee q_{i}\right) \in P_{\text {inf }}$, since $s_{1}, q_{i} \in P_{\text {inf }}$ for $i=1, \ldots, n$. Moreover, q^{\prime} is a product of n atoms, thus, by the induction hypothesis, the intersection in the
last line above is contained in $\mathcal{A}_{P_{\text {inf }}}$. From this we can conclude that $\mathcal{A}_{P_{\text {inf }}}$ contains the set $\Omega_{\left\{q, q_{2}, \ldots, q_{n}\right\}} \in \mathcal{A}_{P_{\mathrm{inf}}}$ whenever $q \in P$ and $q_{j} \in P_{\text {inf }}$, for $j=2, \ldots, n$.

If $K=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ with $q_{1} \in P$ and $q_{2}, \ldots, q_{n} \in P_{\text {inf }}$, then $\Omega_{K} \in \mathcal{A}_{P_{\text {inf }}}$ by the first part of the proof. Assume now that $\Omega_{K} \in \mathcal{A}_{P_{\text {inf }}}$ for all $K=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ such that $q_{1}, \ldots, q_{k} \in P$ and $q_{k+1}, \ldots, q_{n} \in P_{\text {inf }}$. We aim to show that

$$
\begin{equation*}
\Omega_{K} \in \mathcal{A}_{P_{\mathrm{inf}}} \quad \text { when } q_{1}, \ldots, q_{k+1} \in P \text { and } q_{k+2}, \ldots, q_{n} \in P_{\mathrm{inf}} . \tag{5.4}
\end{equation*}
$$

As in the first part we use induction on the number of atoms in q_{k+1}. If q_{k+1} is an atom itself, then $q_{k+1} \in P_{a} \subset P_{\text {inf }}$, thus $\Omega_{\left\{q_{1}, \ldots, q_{k+1}, \ldots, q_{n}\right\}} \in \mathcal{A}_{P_{\text {inf }}}$ by the induction hypothesis. Assume now that (5.4) holds true when the $(k+1)$ th element is a product of at most M atoms. Suppose now the $(k+1)$ th element is a product of $M+1$ atoms, and write $q_{k+1}=s q^{\prime} \in P$ with $s \in P_{a}$ and $q^{\prime} \in P$ a product of M atoms. As before,

$$
\left(P \backslash q_{k+1}^{\prime} P\right)=(P \backslash s P) \sqcup s\left(P \backslash q^{\prime} P\right) .
$$

This splits $\Omega_{\left\{q_{1}, \ldots, q_{k+1}, \ldots, q_{n}\right\}}$ into a disjoint union of two intersections. The first one has an atom s in the $(k+1)$ th term so it is in $\mathcal{A}_{P_{\text {inf }}}$ by the induction hypothesis, so proving (5.4) reduces to showing that the second one, namely $\left(P \backslash q_{1} P\right) \cap \cdots \cap s\left(P \backslash q^{\prime} P\right) \cap \cdots \cap\left(P \backslash q_{n} P\right)$ is in $\mathcal{A}_{P_{\text {inf }}}$. This holds by the second induction hypothesis because

$$
\begin{aligned}
\left(P \backslash q_{1} P\right) \cap \cdots \cap s\left(P \backslash q^{\prime} P\right) \cap \cdots \cap & \left(P \backslash q_{n} P\right)= \\
& \left.s\left[\left(P \backslash s^{-1}\left(s \vee q_{1}\right) P\right) \cap \cdots \cap\left(P \backslash q^{\prime} P\right) \cap \cdots \cap\left(P \backslash s^{-1}\left(s \vee q_{n}\right) P\right)\right)\right]
\end{aligned}
$$

and q^{\prime} is the product of M atoms. This concludes the proof.
We are now ready to prove the main result of this section.
Theorem 5.5. Let (G, P) be a weak quasi-lattice ordered group with P Noetherian. Assume that we are given a compactly aligned product system $\left\{X_{p}\right\}_{p \in P}$ of essential C^{*}-correspondences over P with $X_{e}=A$, a homomorphism $N: P \rightarrow(0, \infty)$ and $\beta \in \mathbb{R}$. Then a tracial state τ on A satisfies the condition of (1.1) if and only if

$$
\begin{equation*}
\tau(a)+\sum_{\emptyset \neq K \subset J}(-1)^{|K|} N(\vee K)^{-\beta} \operatorname{Tr}_{\tau}^{\vee K}(a) \geq 0 \quad \text { for all finite } J \subset P_{\mathrm{inf}} \text { and } a \in A_{+}, \tag{5.5}
\end{equation*}
$$

where the terms corresponding to $\vee K=\infty$ are set to zero.
Proof. Obviously (1.1) implies (5.5). The proof that (5.5) implies (1.1) goes along the lines of the proof of [3, Theorem 9.1], which is the particular case of right-angled Artin monoids.

Suppose τ is a tracial state of A satisfying (5.5). By taking $J=\{s\}$ for $s \in P_{a}$ we see that $F_{s}(\tau)(a) \leq N(s)^{\beta} \tau(a)<\infty$ for all $s \in P_{a}$ and $a \in A_{+}$. By Lemma 3.2, we have that $\operatorname{Tr}_{\tau}^{p}(a)$ is finite for all $p \in P$ and $a \in A_{+}$.

Next recall that \mathcal{B}_{P} is the algebra generated by the collection $\{p P: p \in P\}$, and for each $p \in P$ define

$$
\mu(p P)=N(p)^{-\beta} F_{p}(\tau) \text { for } p \in P
$$

Then μ extends to a finitely additive measure, which we also denote by μ, defined on $\left(P, \mathcal{B}_{P}\right)$ with values in the finite traces of A. Evaluating μ at the sets $\Omega_{J}=\bigcap_{p \in J}(P \backslash p P)$ for finite nonempty subsets $J \subset P \backslash\{e\}$ yields

$$
\mu\left(\Omega_{J}\right)=\mu(P)-\mu\left(\bigcup_{p \in J} p P\right)=F_{e}(\tau)+\sum_{\emptyset \neq K \subset J}(-1)^{|K|} N(\vee K)^{-\beta} F_{\vee K}(\tau) .
$$

Thus our assumption (5.5) guarantees that $\mu\left(\Omega_{J}\right) \geq 0$ for all finite subsets $J \subset P_{\text {inf }}$ and we must prove that this positivity holds for all finite subsets $J \subset P \backslash\{e\}$. By Lemma 5.4 it suffices to show
that μ is positive on all sets in the family $\mathcal{A}_{P_{\mathrm{inf}}}$. Fix a finite subset K of P_{inf}. For $p \in P$ we have that

$$
\begin{aligned}
\mu\left(p \Omega_{K}\right) & =N(p)^{-\beta} F_{p}(\tau)+\sum_{\emptyset \neq H \subset K}(-1)^{|H|} N(p(\vee H))^{-\beta} F_{p(\vee H)}(\tau) \\
& =N(p)^{-\beta} F_{p}\left(\mu\left(\Omega_{K}\right)\right),
\end{aligned}
$$

and the right hand side is positive because $\mu\left(\Omega_{K}\right)$ is positive by assumption. By finite additivity, μ is positive on every set in $\mathcal{A}_{P_{\text {inf }}}$, which completes the proof.

Example 5.6. By exhibiting classes of examples, we point out that the set P_{inf} can be finite, in which case Theorem 5.5 provides a significant reduction, and that the inclusion $P_{a} \subset P_{\text {inf }}$ can be strict for some monoids and an equality for others.
(i) When $P=A_{M}^{+}$is an Artin monoid with finite generating set, the set $P_{\text {inf }}$ finite because it is contained in the finite Garside family shown to exist in [10, Theorem 1.1].
(ii) If P is a finite-type Artin monoid that is not abelian, then there exist canonical generators s, t such that $m_{s, t}>2$, so that $s^{-1}(s \vee t)=\langle t s\rangle^{m_{s, t}-1} \notin S$. Thus $P_{\text {inf }} \neq S$. In this case the arguments of Section 4 yield the reduction of positivity to generators, which is stronger than Theorem 5.5.
(iii) In contrast, when P is a right-angled Artin monoid it is easy to see from [3, Lemma 9.2] that $P_{\text {inf }}$ is equal to the set of canonical generators. Formally, this recovers [3, Theorem 9.1] as a corollary of Theorem 5.5, but unlike Proposition 4.12, this proof is not really different since the proof of Theorem 5.5 is modelled on that of [3, Theorem 9.1].

6. KMS-GAPS

We assume in this section that (G, P) has no nontrivial invertible elements, that is, $P \cap P^{-1}=\{e\}$. It is known that the associated (full) semigroup C^{*}-algebra $C^{*}(P)$ may be viewed as the NicaToeplitz algebra $\mathcal{N} \mathcal{T}(X)$ constructed from the product system $X=\left\{X_{p}\right\}_{p \in P}$ with one-dimensional fibres $X_{p}=\mathbb{C}$, where the left action is given by complex multiplication for all $p \in P$, see [28, Proposition 5.6]. Suppose that $N: P \rightarrow(0, \infty)$, let $\sigma_{t}\left(v_{p}\right)=N(p)^{i t} v_{p}$ for $p \in P$ and $t \in \mathbb{R}$ and let us analyse (1.1) for $\left(C^{*}(P), \sigma\right)$.

Since $A=X_{e} \cong \mathbb{C}$, a tracial state τ on A is simply $\tau=i d$. Moreover, for each finite non-empty $K \subset P$ such that $\vee K<\infty$ we have $\operatorname{Tr}_{\tau}^{\vee K}=\tau=i d$. Thus for given $\beta \in \mathbb{R},(1.1)$ rewrites as

$$
\begin{equation*}
1+\sum_{\emptyset \neq K \subset J}(-1)^{|K|} N(\vee K)^{-\beta} \geq 0, \text { for all finite nonempty } J \subset P \backslash\{e\} \tag{6.1}
\end{equation*}
$$

This condition implies the existence of a KMS_{β}-state for $\left(C^{*}(P), \sigma\right)$ by Theorem 3.5. This condition also implies that the finitely additive measure on \mathcal{B}_{P} given by

$$
\begin{equation*}
\mu(p P)=N(p)^{-\beta} \text { for } p P \in \mathcal{B}_{P} \tag{6.2}
\end{equation*}
$$

extends to a genuine measure on the σ-algebra generated by $\{p P: p \in P\}$.
A refinement of this observation was implicit already in [3]. More precisely, it was shown in [3, Lemma 7.2] that every finitely additive measure μ on $\left(P, \mathcal{B}_{P}\right)$ such that $\sum_{p \in P} \mu(p P)<\infty$ extends to a genuine measure on the σ-algebra of all subsets of P. When μ is as in (6.2), we are asking that $\sum_{p \in P} N(p)^{-\beta}<\infty$. Recall from [3, Definition 7.8] that the infimum of all such real β is the critical inverse temperature of the system $\left(C^{*}(P), \sigma\right)$, where we assume that $N(p) \geq 1$ for all $p \in P$. When β_{c} is finite, there is a unique KMS_{β}-state for every $\beta>\beta_{c}$, and it is of finite type in the sense of [3, Definition 6.4], see also [3, Example 9.6]. Assuming further that P is Noetherian, that P has a finite set of atoms and that $N(p)>1$ for all $p \in P \backslash\{e\}$, any possible KMS_{β}-state of infinite type
will arise at values β where

$$
1+\sum_{\emptyset \neq K \subset P_{a}}(-1)^{|K|} N\left(q_{K}\right)^{-\beta}=0
$$

cf. [6] and [3]. Note that this condition means that (6.1) reduces to having equality at the single subset $J=P_{a}$ of $P \backslash\{e\}$.

We note at this point that in case (G, P) is lattice ordered, then for any homomorphism N : $P \rightarrow(0, \infty)$, condition (6.1) is trivially satisfied at $\beta=0$ for every J, because it reduces to $\sum_{K \subset J}(-1)^{|K|}=0$, which follows by the binomial formula. Thus $\left(C^{*}(P), \sigma\right)$ admits a gaugeinvariant KMS_{0}-state. We note that this was first proved in [6, Proposition 3.7], cf. the equivalence of (2) and (4), which does not require the additional assumption that $N(p)=1$ only if $p=e$. In this case any KMS_{0}-state is of infinite type [3, Corollary 6.10(i)].
6.1. Artin monoids of finite type and KMS-gaps. Next we wish to apply the results of the previous sections to illustrate a new phenomenon in the context of C^{*}-algebras of Artin monoids, namely the appearance of gaps in the subset of inverse temperatures that support KMS-states. The next definition makes this precise.

Definition 6.1. Let (G, P) be quasi-lattice ordered. Assume that we are given a compactly aligned product system $\left\{X_{p}\right\}_{p \in P}$ of C^{*}-correspondences over P with $X_{e}=A$ and a homomorphism $N: P \rightarrow(0, \infty)$. We say that $(\mathcal{N} \mathcal{T}(X), \sigma)$ has a KMS-gap if

$$
\left\{\beta \in \mathbb{R} \mid \text { there exists a gauge-invariant } \mathrm{KMS}_{\beta} \text {-state }\right\} \text { is disconnected. }
$$

A large class of monoids where there are no KMS-gaps is provided by non-abelian right-angled Artin monoids, cf. the last paragraph of Example 9.6 of [3]. More precisely, let P be a non-abelian right-angled Artin monoid with finite generating set $S \subset P \backslash\{e\}$. Let $N: P \rightarrow(0, \infty)$ be a homomorphism such that $N(p)=1$ only for $p=e$. Then P is not lattice ordered, $\beta_{c}>0$ by [6, Proposition 3.7], and the possible behavior of KMS_{β}-states is as follows: there are none for $\beta<\beta_{c}$, there is a unique $\mathrm{KMS}_{\beta_{c}}$-state, which is of infinite type, and for each $\beta>\beta_{c}$ there is a unique KMS_{β}-state, which is of finite type. In particular, there are no KMS-gaps.

Next we see that the Artin braid monoids B_{n}^{+}for $n \geq 3$ offer a different picture.
Proposition 6.2. Suppose $n \geq 3$ and let G be the braid group B_{n} with generating set $\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ and relations

$$
\begin{array}{ll}
s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} & \text { when }|i-j|=1 \\
s_{i} s_{j}=s_{j} s_{i} & \text { when }|i-j| \geq 2
\end{array}
$$

Let B_{n}^{+}be the associated braid monoid and let $N: B_{n}^{+} \rightarrow[1, \infty)$ be the homomorphism given by $N(p)=\exp (\ell(p))$ for $p \in B_{n}^{+}$, where ℓ is the normalised length function on B_{n}^{+}. Then $\left(C^{*}\left(B_{n}^{+}\right), \sigma\right)$ has a gauge-invariant KMS_{0}-state and no KMS_{β}-states in the interval $(0, a)$, where $\exp (-a)=$ $\sqrt{5} / 2-1 / 2 \approx 0.61803$ is (the reciprocal of) the golden ratio.

Proof. Since $P=B_{n}^{+}$is lattice ordered, there is a gauge-invariant KMS_{0}-state, as we already observed. In order to show there is a KMS-gap that extends from 0 to at least a we show that (6.1) fails for the subset $J=\left\{s_{1}, s_{2}\right\}$, that is

$$
g_{J}(\beta)=1+\sum_{\emptyset \neq K \subset J}(-1)^{|K|} N(\vee K)^{-\beta}
$$

is strictly negative in the interval $(0, a)$. Since $\ell\left(s_{1} \vee s_{2}\right)=\ell\left(s_{1} s_{2} s_{1}\right)=3$, is is clear that

$$
g_{\left\{s_{1}, s_{2}\right\}}(\beta)=1-2 e^{-\beta}+\left(e^{-\beta}\right)^{3}
$$

The polynomial $1-2 t+t^{3}$ is negative in the interval $\left(\frac{\sqrt{5}}{2}-\frac{1}{2}, 1\right)$ determined by its two positive roots, so if we set $t=e^{-\beta}$ we see that $g_{\left\{s_{1}, s_{2}\right\}}(\beta)<0$ for $\beta \in(0, a)$. Hence (6.1) fails for $J=\left\{s_{1}, s_{2}\right\}$ and all β in $(0, a)$, so there are no $\operatorname{KMS}_{\beta}$-states in $(0, a)$.
Corollary 6.3. (1) Let $t_{1}=\sqrt{5} / 2-1 / 2 \approx 0.618$ be the smallest positive root of the clique polynomial $1-2 t+t^{3}$ of B_{3}^{+}, and define $a=-\log t_{1}$. Then the inverse temperature space of $\left(C^{*}\left(B_{3}^{+}\right), \sigma\right)$ is $\{0\} \cup[a, \infty]$
(2) Let r_{1} be the smallest positive root of $1-2 t-t^{2}+t^{3}+t^{4}+t^{5}$, and $b=-\log r_{1}$. Then the inverse temperature space of $\left(C^{*}\left(B_{4}^{+}\right), \sigma\right)$ is $\{0\} \cup[b, \infty]$.
Proof. The clique polynomial is the reciprocal of the growth series, see [27], so a and b are the critical temperatures for B_{3}^{+}and B_{4}^{+}respectively and we know from [6, Theorem 3.5] and [6, Proposition 3.7] that there is a KMS_{β}-state for each $\beta \in\{0\} \cup\left[\beta_{c}, \infty\right]$, which is unique for $\beta \neq 0$. Recall also from [6 , Proposition 4.5] that if there exists a KMS_{β}-state for some $\beta \in\left(0, \beta_{c}\right)$, then $e^{-\beta}$ has to be a root of the clique polynomial in the interval $\left(e^{-\beta_{c}}, 1\right)$; however, [6] does not decide whether there are any KMS_{β}-states corresponding to any intermediate roots. Our positivity criterion allows us to retrieve the known part of the temperature space and show that there are no KMS states in $\left(0, \beta_{c}\right)$.

We deal with B_{3}^{+}first. Since here is only one relation, namely $s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$, and all subsets are cliques, the clique polynomial is $1-2 t+t^{3}$, which has roots $-\sqrt{5} / 2-1 / 2<0, t_{1}=\sqrt{5} / 2-1 / 2$, and 1 and is strictly positive on $\left(0, t_{1}\right)$. The other cliques have polynomials 1 and $1-t$, which are positive on all of $(0,1)$. Hence (6.1) holds for $\beta \geq \beta_{c}$, proving the assertion about B_{3}^{+}.

The relations in B_{4}^{+}are

$$
s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}, s_{2} s_{3} s_{2}=s_{3} s_{2} s_{3} \text { and } s_{1} s_{3}=s_{3} s_{1}
$$

and since B_{4} is finite type, all the subsets of S are cliques:

$$
\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}
$$

The common upper bounds of all but the full clique have been computed above, and $\vee\left\{s_{1}, s_{2}, s_{3}\right\}=$ $s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$, which has length 6 . Thus, the clique polynomial for B_{4}^{+}written with $t=e^{-\beta}$, is $h(t)=1-3 t+t^{2}+2 t^{3}-t^{6}=(1-t)\left(1-2 t-t^{2}+t^{3}+t^{4}+t^{5}\right)$.

We may now use the criterion of (6.1) for cliques J in S to check whether there is a gaugeinvariant KMS_{β}-state at $\beta=-\log r_{1}$. From the proof of Proposition 6.2 we know that the condition is trivially satisfied for the choices $J=\left\{s_{1}, s_{2}\right\}$ and $J=\left\{s_{2}, s_{3}\right\}$. For the choice $J=\left\{s_{1}, s_{3}\right\}$, the corresponding polynomial $1-2 t+t^{2}$ is nonnegative everywhere. Finally, the one-element choices of J yield the polynomial $1-t$, which is positive at t_{1}. Hence there is a gauge-invariant KMS_{β}-state at $\beta=-\log r_{1}$ in view of Corollary 4.11 and [3, Theorem 5.1]. In the interval $(0,1)$ the polynomial $1-2 t-t^{2}+t^{3}+t^{4}+t^{5}$ has two other roots, $r_{2} \approx 0.659$ and $r_{3} \approx 0.874$. But since the positivity condition fails at both these roots for the clique polynomial $1-2 t+t^{3}$ of $J=\left\{s_{1}, s_{2}\right\}$, there are no KMS_{β}-state for $\beta \in(0, b)$. This completes the proof for B_{4}^{+}.

7. Characterisation of reduction to generators

In this section we investigate more closely conditions under which the positivity condition (5.5) for the minimal set P_{inf} can be reduced to a smaller subset of inequalities, namely those involving only finite subsets J of the set P_{a} of atoms. We assume throughout that (G, P) is a weak quasilattice ordered group. Recall that the key ingredient in the proof of Theorem 5.5 is Lemma 5.4 showing that the collection $\mathcal{A}_{P_{\text {inf }}}$ defined via (5.1) contains all sets Ω_{J} for $J \subset P \backslash\{e\}$ and hence is the algebra \mathcal{B}_{P} from [3, Section 2].

Theorem 7.1. If the collection

$$
\mathcal{A}_{P_{a}}=\left\{\sqcup_{j=1}^{n} p_{j} \Omega_{K_{j}}: p_{j} \in P \text { and } K_{j} \subset P_{a} \text { finite or empty }\right\}
$$

is an algebra, then $\mathcal{A}_{P_{a}}=\mathcal{B}_{P}$ and reduction of the positivity condition to generators holds for P.
Proof. By Lemma 5.3, $p P \in \mathcal{A}_{P_{a}}$ for all $p \in P$. Now, \mathcal{B}_{P} is the algebra (closed under finite unions, intersections and complements) generated by the sets $p P$, so if $\mathcal{A}_{P_{a}}$ is an algebra we get that $\mathcal{B}_{P} \subseteq \mathcal{A}_{P_{a}}$, which implies that $\mathcal{A}_{P_{a}}=\mathcal{A}_{P_{\text {inf }}}$. Following the proof Theorem 5.5 we see that condition (1.1) can be reduced to subsets of P_{a}.

In view of this we aim to find conditions ensuring that $\mathcal{A}_{P_{a}}$ is an algebra. By Lemma 5.3 the collection $\mathcal{A}_{P_{a}}$ contains the sets $p P$ and their complements $P \backslash p P$, and obviously $\mathcal{A}_{P_{a}}$ is also closed under finite disjoint unions.

Lemma 7.2. Let (G, P) be a weak quasi-lattice ordered group with P Noetherian. If $\mathcal{A}_{P_{a}}$ is closed under finite intersections, then it contains all arbitrary finite unions of sets of the form $p P$ with $p \in P$.

Proof. The proof is by induction on the cardinality of the union. If the cardinality is 1 the union is a set on the form $p P$, which is in $\mathcal{A}_{P_{a}}$ by Lemma 5.3. Let $n \geq 1$ and assume that $\mathcal{A}_{P_{a}}$ is closed under unions of at most n sets of the form $p P$ with $p \in P$. Let $p_{1}, p_{2}, \ldots, p_{n+1} \in P$. We write

$$
\begin{aligned}
\bigcup_{i=1}^{n+1} p_{i} P & =\left(\bigcup_{i=1}^{n} p_{i} P\right) \bigcup p_{n+1} P \\
& =\left[\left(\bigcup_{i=1}^{n} p_{i} P\right)^{c} \bigcap p_{n+1} P\right] \bigsqcup\left[\bigcup_{i=1}^{n} p_{i} P \bigcap p_{n+1} P\right] \bigsqcup\left[\bigcup_{i=1}^{n} p_{i} P \bigcap\left(p_{n+1} P\right)^{c}\right] \\
& =B_{1} \bigsqcup B_{2} \bigsqcup B_{3} .
\end{aligned}
$$

We show next that the sets B_{1}, B_{2} and B_{3} are in $\mathcal{A}_{P_{a}}$. We have $B_{1}=\bigcap_{i=1}^{n}\left(p_{i} P\right)^{c} \bigcap p_{n+1} P$, which is in $\mathcal{A}_{P_{a}}$ by Lemma 5.3 and our hypothesis that $\mathcal{A}_{P_{a}}$ is closed under finite intersections. The set B_{2} takes the form $\bigcup_{i=1}^{n}\left(p_{i} P \bigcap p_{n+1} P\right)=\bigcup_{i=1}^{n}\left(p_{i} \vee p_{n+1}\right) P$, where $\left(p_{i} \vee p_{n+1}\right) P=\emptyset$ if $p_{i} \vee p_{n+1}=\infty$. Since this union has at most n terms, $B_{2} \in \mathcal{A}_{P_{a}}$ by the induction hypothesis. Similarly, $\bigcup_{i=1}^{n} p_{i} P \in \mathcal{A}_{P_{a}}$ by the induction hypothesis, and $\left(p_{n+1} P\right)^{c} \in \mathcal{A}_{P_{a}}$ by Lemma 5.3, so $B_{3} \in \mathcal{A}_{P_{a}}$ because $\mathcal{A}_{P_{a}}$ is closed under intersections. Since $\mathcal{A}_{P_{a}}$ is closed under disjoint finite unions, the proof is complete.

Proposition 7.3. Let (G, P) be a weak quasi-lattice ordered group with P Noetherian. If $\mathcal{A}_{P_{a}}$ is closed under finite intersections, then $\mathcal{A}_{P_{a}}=\mathcal{B}_{P}$.

Proof. We start by proving that $\mathcal{A}_{P_{a}}$ is closed under complements. Fix a set $A \in \mathcal{A}_{P_{a}}$ of the form $A=\bigsqcup_{i \in I} p_{i} \Omega_{K_{i}}$, where I is finite, $p_{i} \in P$ and $K_{i} \subset P_{a}$ is finite, for every $i \in I$. We have that

$$
A^{c}=\bigcap_{i \in I}\left(p_{i} \Omega_{K_{i}}\right)^{c}=\bigcap_{i \in I}\left[\left(p_{i} \bigcup_{k_{i} \in K_{i}} k_{i} P\right) \bigsqcup\left(p_{i} P\right)^{c}\right]
$$

Now $\left(p_{i} P\right)^{c} \in \mathcal{A}_{P_{a}}$ by Lemma 5.3 and $\bigcup_{k_{i} \in K_{i}} k_{i} P \in \mathcal{A}_{P_{a}}$ by Lemma 7.2, and it follows that each set in the intersection over $i \in I$ is in $\mathcal{A}_{P_{a}}$. Since $\mathcal{A}_{P_{a}}$ is closed under finite intersections, we obtain that $A^{c} \in \mathcal{A}_{P_{a}}$, as claimed. It remains to show that $\mathcal{A}_{P_{a}}$ is closed under finite unions. Given $A_{1}, A_{2} \in \mathcal{A}_{P_{a}}$, we write

$$
A_{1} \cup A_{2}=\left(A_{1} \cap A_{2}^{c}\right) \sqcup\left(A_{1} \cap A_{2}\right) \sqcup\left(A_{2} \cap A_{1}^{c}\right),
$$

and use the first part of the proof in conjunction with the hypothesis to obtain that $A_{1} \cup A_{2} \in \mathcal{A}_{P_{a}}$. The general case follows by induction. This proves that $\mathcal{A}_{P_{a}}$ is an algebra, which is clearly contained in \mathcal{B}_{P} and contains $p P$ for every $p \in P$, so $\mathcal{A}_{P_{a}}=\mathcal{B}_{P}$.

Lemma 7.4. Let (G, P) be a weak quasi-lattice ordered group with P Noetherian. Suppose that $(P \backslash s P) \cap q \Omega_{K} \in \mathcal{A}_{P_{a}}$ for all $s \in P_{a}$ and all finite $K \subset \mathcal{A}_{P_{a}}$. Then $\mathcal{A}_{P_{a}}$ is closed under finite intersections.
Proof. Since every set in $\mathcal{A}_{P_{a}}$ is a disjoint union of sets of the form $q \Omega_{K}$ with $K \subset P_{a}$, it suffices to prove that $\left(p \Omega_{L}\right) \cap\left(q \Omega_{K}\right) \in \mathcal{A}_{P_{a}}$ for $p, q \in P$ and $K, L \subset P_{a}$ finite.

We proceed by induction on $|L|$. Assume first $L=\{s\}$ for $s \in P_{a}$. If $p \vee q=\infty$ we have $p P \cap q P=\emptyset$ and $p(P \backslash s P) \bigcap q \Omega_{K}=\emptyset \in \mathcal{A}_{P_{a}}$. If $p \vee q<\infty$, we have

$$
\begin{aligned}
p(P \backslash s P) \bigcap q \Omega_{K} & =p(P \backslash s P) \bigcap\left((p \vee q) \bigcap_{k \in K}(P \backslash k P)\right) \\
& =p\left[(P \backslash s P) \bigcap\left(p^{-1}(p \vee q) \bigcap_{k \in K}(P \backslash k P)\right)\right] .
\end{aligned}
$$

Since the intersection is in $\mathcal{A}_{P_{a}}$ by hypothesis and $\mathcal{A}_{P_{a}}$ is closed under left multiplication by p, this concludes the proof of the case $|L|=1$.

Fix $p, q \in P$ and a finite $K \subset P_{a}$. Suppose $\left(p \Omega_{L^{\prime}}\right) \cap\left(q \Omega_{K}\right) \in \mathcal{A}_{P_{a}}$ for all $L^{\prime} \subset P_{a}$ with $\left|L^{\prime}\right|=N$ and let $L \subset P_{a}$ be such that $L=L^{\prime} \cup\{t\}$ for $t \in P_{a}$, so that $|L|=N+1$. Then

$$
\begin{aligned}
{\left[p \bigcap_{h \in L}(P \backslash h P)\right] \bigcap q \Omega_{K} } & =p(P \backslash t P) \bigcap\left[p \bigcap_{h \in L^{\prime}}(P \backslash h P)\right] \bigcap q \Omega_{K} \\
& =p(P \backslash t P) \bigcap A^{\prime} \in \mathcal{A}_{P_{a}} .
\end{aligned}
$$

By the induction hypothesis A^{\prime} is in $\mathcal{A}_{P_{a}}$, so it is a disjoint union of sets of the form $q_{j} \Omega_{K_{j}}$, to which we may apply the case $|L|=1$ to complete the proof.

Next we illustrate the above results with an application to the braid group on two generators.
Lemma 7.5. Let $\left(B_{3}, B_{3}^{+}\right)$the finite-type Artin group-monoid pair with generating set $S_{2}=\left\{s_{1}, s_{2}\right\}$ and presentation

$$
\left\langle s_{1}, s_{2} \mid s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}\right\rangle
$$

If $p \in B_{3}^{+}$can be written as $p=p_{1}\left(s_{1} s_{2} s_{1}\right) p_{2}$ for $p_{1}, p_{2} \in P$, then $s_{1} \leq p$ and $s_{2} \leq p$.
Proof. We only prove that $s_{1} \leq p$, as the other claim is analogous. Assume for a contradiction that $s_{1} \not \leq p$. Then we can write p in the form $p=p_{1} s_{1} s_{2} s_{1} p_{2}$ where $p_{1} \neq e$ has the smallest possible length. Now p_{1} must end with either s_{1} or s_{2}. In case $p_{1}=r_{1} s_{1}$, we have $p=r_{1}\left(s_{1} s_{1} s_{2} s_{1} p_{2}\right)=$ $r_{1}\left(s_{1} s_{2} s_{1} s_{2} p_{2}\right)$, contradicting the choice of p_{1}. The case $p_{1}=r_{1} s_{2}$ leads to a similar contradiction. Hence p admits an expression in the generators that starts with s_{1}, which precisely means that $s_{1} \leq p$.

Lemma 7.6. For all $p \in B_{3}^{+}$and $i=1,2$ we have that

$$
p \vee s_{i} \in\left\{s_{1}, s_{2}, p, p s_{1}, p s_{2}, p s_{1} s_{2}, p s_{2} s_{1}\right\} .
$$

Proof. Assume $i=1$ first. The case $p=e$ is trivially satisfied, and the case $p=s_{2}$ is easy to verify because $s_{1} \vee s_{2}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=p s_{1} s_{2}$. The case $s_{1} \leq p$ obviously yields $p \vee s_{1}=p$. So we may assume that p has at least two letters, and also that $s_{1} \not \leq p$, so that p does not have a factor $s_{1} s_{2} s_{1}$ by Lemma 7.5. In this case $p \vee s_{1}=p b$ for some $b \in B_{3}^{+} \backslash\{e\}$. Factoring out the last two letters of p, we write $p=p_{1} x$ where x is one of $s_{1} s_{2}, s_{2} s_{1}, s_{1}^{2}$, or s_{2}^{2}, and it is easy to see that b is one of s_{1}, $s_{2}, s_{2} s_{1}$, or $s_{1} s_{2}$, respectively.
Proposition 7.7. Let $\left(B_{3}, B_{3}^{+}\right)$be the braid group with generating set $S_{2}=\left\{s_{1}, s_{2}\right\}$. Then $\mathcal{A}_{S_{2}}$ is an algebra.

Proof. By Proposition 7.3 and Lemma 7.4, we only need to show that the set

$$
B:=\left(P \backslash s_{i} P\right) \bigcap\left[q \bigcap_{k \in K}(P \backslash k P)\right]
$$

is in $\mathcal{A}_{S_{2}}$ for $i=1,2$, finite $K \subseteq S_{2}$ and $q \in P$. We rewrite

$$
B=\left(P \backslash s_{i} P\right) \bigcap\left[q \bigcap_{k \in K}(P \backslash k P)\right]=q\left[\left(P \backslash q^{-1}\left(q \vee s_{i}\right) P\right) \bigcap\left(\bigcap_{k \in K}(P \backslash k P)\right)\right] .
$$

By Lemma 7.6, we have $q \vee s_{i} \in\left\{s_{i}, q, q s_{1}, q s_{2}, q s_{1} s_{2}, q s_{2} s_{1}\right\}$ for $i=1,2$. This yields

$$
\left(P \backslash q^{-1}\left(q \vee s_{i}\right) P\right) \in\left\{\emptyset,\left(P \backslash s_{1} P\right),\left(P \backslash s_{2} P\right),\left(P \backslash s_{1} s_{2} P\right),\left(P \backslash s_{2} s_{1} P\right)\right\}
$$

for $i=1,2$. It is clear that if $\left(P \backslash q^{-1}\left(q \vee s_{i}\right) P\right)$ is one of $\emptyset,\left(P \backslash s_{1} P\right),\left(P \backslash s_{2} P\right)$, then B is contained in $\mathcal{A}_{S_{2}}$.

Next we consider the case that $\left(P \backslash q^{-1}\left(q \vee s_{i}\right) P\right)=\left(P \backslash s_{1} s_{2} P\right)$, and examine its possible intersection with Ω_{K} for given $K \subset S_{2}$. If $K=\left\{s_{1}\right\}$, then $\left(P \backslash s_{1} s_{2} P\right) \cap\left(P \backslash s_{1} P\right)=\left(P \backslash s_{1} P\right) \in \mathcal{A}_{S_{2}}$. If $K=\left\{s_{2}\right\}$, then $\left(P \backslash s_{1} s_{2} P\right) \cap\left(P \backslash s_{2} P\right)=\left[s_{1}\left(P \backslash s_{2} P\right) \sqcup\left(P \backslash s_{1} P\right)\right] \cap\left(P \backslash s_{2} P\right)$. We need to show that $s_{1}\left(P \backslash s_{2} P\right) \cap\left(P \backslash s_{2} P\right) \in \mathcal{A}_{S_{2}}$. This follows from

$$
\begin{aligned}
s_{1}\left(P \backslash s_{2} P\right) \cap\left(P \backslash s_{2} P\right) & =s_{1}\left[\left(P \backslash s_{2} P\right) \cap\left(P \backslash s_{1}^{-1}\left(s_{1} \vee s_{2}\right) P\right)\right] \\
& =s_{1}\left[\left(P \backslash s_{2} P\right) \cap\left(P \backslash s_{2} s_{1} P\right)\right]=s_{1}\left(P \backslash s_{2} P\right) .
\end{aligned}
$$

In case $K=\left\{s_{1}, s_{2}\right\}$ we obtain $\left(P \backslash s_{1} s_{2} P\right) \cap\left(P \backslash s_{1} P\right) \cap\left(P \backslash s_{2} P\right)=\left(P \backslash s_{1} P\right) \cap\left(P \backslash s_{2} P\right)$, which is in $\mathcal{A}_{S_{2}}$. Checking the remaining case $\left(P \backslash q^{-1}\left(q \vee s_{i}\right) P\right)=\left(P \backslash s_{2} s_{1} P\right)$ can be done in the same way. Hence $B \in \mathcal{A}_{S_{2}}$ and the proposition follows.

Remark 7.8. It follows from Proposition 7.7 that reduction of positivity to generators holds for B_{3}^{+}, a fact that already follows from Corollary 4.11 because B_{3} is of finite-type.

New examples of weak quasi-lattice ordered groups satisfying $\mathcal{A}_{P_{a}}=\mathcal{B}_{P}$ can be obtained by taking free and direct products. Suppose, for instance that G_{1} and G_{2} are two Artin groups with canonical generating sets P_{a}^{1} and P_{a}^{2} and Coxeter matrices M_{1} and M_{2}, respectively. Then their free and direct products are also Artin groups with generating set $P_{a}=P_{a}^{1} \cup P_{a}^{2}$, whose Coxeter matrices have diagonal blocks M_{1} and M_{2} and remaining entries equal to ∞, in the case of the free product, or 2 , in the case of the direct product. And similarly for the corresponding Artin monoids.

Proposition 7.9. Let $\left(G_{1}, P_{1}\right)$ and $\left(G_{2}, P_{2}\right)$ be two Artin group-monoid pairs, with canonical generating sets P_{a}^{1} and P_{a}^{2}, respectively, and suppose that $\mathcal{A}_{P_{a}^{1}}$ and $\mathcal{A}_{P_{a}^{2}}$ are algebras of subsets of P_{1} and P_{2} respectively. Let $P_{a}=P_{a}^{1} \cup P_{a}^{2}$.
(1) $\left(G_{1} * G_{2}, P_{1} * P_{2}\right)$ is an Artin group-monoid pair with generating set P_{a} subject to the relations imposed in the presentations of G_{1} and G_{2}, and the collection $\mathcal{A}_{P_{a}}$ is an algebra of subsets of $P_{1} * P_{2}$.
(2) $\left(G_{1} \times G_{2}, P_{1} \times P_{2}\right)$ is an Artin group-monoid pair with generating set P_{a} satisfying the relations $s_{1} s_{2}=s_{2} s_{1}$ for all pairs of generators $s_{1} \in P_{a}^{1}$ and $s_{2} \in P_{a}^{2}$ in addition to the relations already imposed in the presentations of G_{1} and G_{2}, the collection $\mathcal{A}_{P_{a}}$ is an algebra of subsets of $P_{1} \times P_{2}$.

Proof. We prove (1) first. Let (G, P) temporarily denote the free product to simplify the notation. By Lemma 7.4 and Proposition 7.3, it suffices to show that

$$
\begin{equation*}
(P \backslash t P) \cap q \Omega_{K} \in \mathcal{A}_{P_{a}} \quad \text { for all } t \in P_{a}, q \in P, K \subset P_{a} \tag{7.1}
\end{equation*}
$$

We start by rewriting $B:=(P \backslash t P) \cap q \Omega_{K}$ as

$$
B=(P \backslash t P) \bigcap\left[q \bigcap_{k \in K}(P \backslash k P)\right]=q\left[\left(P \backslash q^{-1}(q \vee t) P\right) \bigcap\left(\bigcap_{k \in K}(P \backslash k P)\right)\right] .
$$

Assume first that $t \in P_{a}^{1}$. If $q \in P_{1}$, then $B \in \mathcal{A}_{P_{a}^{1}} \subseteq \mathcal{A}_{P_{a}}$ by the assumption that $\mathcal{A}_{P_{a}^{1}}$ forms an algebra of sets of P_{1}. Otherwise there exists at least one atom $s \in P_{a}^{2}$ that is a factor in q. Let s_{1} be the first instance (from the left) of such an atom in q. Then $q=a s_{1} b$ where $a \in P_{1}$ and $b \in P$. We then observe that $t \vee q=q$ if and only if t is a factor in a and t can be shuffled to the front of a, and that otherwise $t \vee q=\infty$, because t can not be shuffled past s_{1}. This implies that $q^{-1}(q \vee t) \in\{e, \infty\}$, and so $\left(P \backslash q^{-1}(q \vee t) P\right) \in\{P, \emptyset\}$, leading to $B \in \mathcal{A}_{P_{a}}$. The argument is analogous for the case where $t \in P_{a}^{2}$. This concludes the proof of (1).

In order to prove (2), let now (G, P) denote the direct product. As with (1) it suffices to verify (7.1). Writing $K=K_{1} \sqcup K_{2}$ with $K_{1} \subseteq P_{a}^{1}$ and $K_{2} \subseteq P_{a}^{2}$, we see that

$$
B=q\left[\left(P \backslash q^{-1}(q \vee t) P\right) \bigcap\left(\bigcap_{k_{1} \in K_{1}}\left(P \backslash k_{1} P\right)\right) \bigcap\left(\bigcap_{k_{2} \in K_{2}}\left(P \backslash k_{2} P\right)\right)\right] .
$$

Assume first that $t \in P_{a}^{1}$. If $q \in P_{1}$, then $q\left(P \backslash q^{-1}(q \vee t) P\right) \bigcap\left(\bigcap_{k_{1} \in K_{1}}\left(P \backslash k_{1} P\right)\right) \in \mathcal{A}_{P_{a}^{1}}$ by the assumption that $\mathcal{A}_{P_{a}^{1}}$ forms an algebra of sets of P_{1}. Otherwise there exists at least one atom $s \in P_{a}^{2}$ that is a factor in q. Since P_{a}^{2} commutes with P_{a}^{1} in P, we can write $q=q_{1} s_{1} \cdots s_{n}$, where $s_{1}, \ldots, s_{n} \in P_{a}^{2}$ and $q_{1} \in P_{1}$. By assumption t is in P_{a}^{1}, so it commutes with all the elements s_{1}, \ldots, s_{n}. Thus, $q \vee t=\infty$ when $q_{1} \vee t=\infty$, and $q \vee t=\left(q_{1} \vee t\right) s_{1} \cdots s_{n}=s_{1} \cdots s_{n}\left(q_{1} \vee t\right)$ when $q_{1} \vee t<\infty$, in which case

$$
q^{-1}(q \vee t)=q_{1}^{-1} s_{n}^{-1} \cdots s_{1}^{-1} s_{1} \cdots s_{n}\left(q_{1} \vee t\right)=q_{1}^{-1}\left(q_{1} \vee t\right) \in P_{1} .
$$

Hence, we either have that $\left(P \backslash q^{-1}(q \vee t) P\right)=P$ (in the case where $q_{1} \vee t=\infty$), or that

$$
\left(P \backslash q^{-1}(q \vee t) P\right) \bigcap\left(\bigcap_{k_{1} \in K_{1}}\left(P \backslash k_{1} P\right)\right)=\left(P \backslash q_{1}^{-1}\left(q_{1} \vee t\right) P\right) \bigcap\left(\bigcap_{k_{1} \in K_{1}}\left(P \backslash k_{1} P\right)\right) \in \mathcal{A}_{P_{a}^{1}}
$$

(in the case where $q_{1} \vee t<\infty$), by the algebra assumption on $\mathcal{A}_{P_{a}^{1}}$.
It remains to prove that $p_{1} \Omega_{K_{1}} \cap \Omega_{K_{2}} \in \mathcal{A}_{P_{a}}$ for all $p_{1} \in P_{1}, K_{1} \subseteq P_{a}^{1}$ and $K_{2} \subseteq P_{a}^{2}$. We observe that

$$
\begin{aligned}
p_{1} \Omega_{K_{1}} \cap \Omega_{K_{2}} & =p_{1}\left[\bigcap_{k_{1} \in K_{1}}\left(P \backslash k_{1} P\right) \bigcap \bigcap_{k_{2} \in K_{2}}\left(P \backslash p_{1}^{-1}\left(p_{1} \vee k_{2}\right) P\right)\right] \\
& =p_{1}\left[\bigcap_{k_{1} \in K_{1}}\left(P \backslash k_{1} P\right) \bigcap \bigcap_{k_{2} \in K_{2}}\left(P \backslash p_{1}^{-1} p_{1} k_{2} P\right)\right] \\
& =p_{1}\left[\bigcap_{k_{1} \in K_{1}}\left(P \backslash k_{1} P\right) \bigcap \bigcap_{k_{2} \in K_{2}}\left(P \backslash k_{2} P\right)\right]
\end{aligned}
$$

where the second equality follows by the fact that $p_{1} \vee k_{2}=p_{1} k_{2}=k_{2} p_{1}$, since $k_{2} \in P_{a}^{2} \subseteq P_{2}$ and $p_{1} \in P_{1}$ and all elements from P_{1} commute with all elements from P_{2}. Since the set in the last line of the above calculation is clearly in $\mathcal{A}_{P_{a}}$, we conclude $p_{1} \Omega_{K_{1}} \cap \Omega_{K_{2}} \in \mathcal{A}_{P_{a}}$. Interchanging the roles of P_{a}^{1} and P_{a}^{2} proves the case $t \in P_{a}^{2}$ and finishes the proof.

It is easy to see that by taking free and direct products of right-angled or finite-type Artin monoids we obtain other Artin monoids many of which are neither right-angled nor finite-type. As a result we obtain new monoids that satisfy reduction of positivity to generators.

Corollary 7.10. Under the assumptions of Proposition 7.9, let (G, P) denote either the free or the direct product of $\left(G_{1}, P_{1}\right)$ and $\left(G_{2}, P_{2}\right)$. Assume moreover that we are given a compactly aligned product system $\left\{X_{p}\right\}_{p \in P}$ of C^{*}-correspondences over P with $X_{e}=A$, a homomorphism $N: P \rightarrow$ $(0, \infty)$ and $\beta \in \mathbb{R}$. Then reduction of the positivity condition to generators holds for P.

Proof. Combine Theorem 7.1 with Proposition 7.9.
Funding: This work was partially supported by the Natural Sciences and Engineering Research Council of Canada, Discovery Grant RGPIN-2017-04052 to M.L.; the Trond Mohn Foundation through the project "Pure mathematics in Norway" to M.L.; the Norwegian Mathematical Society through an Abel stipend to L.E.G. to visit the University of Victoria, Canada; the Cluster of Excellence Mathematics Münster at WWU, Germany, through a Research Fellowship to N.S.L; and the RCN grant \#300837.

Acknowledgements: M.L. is thankful for the hospitality of the Department of Mathematics at the University of Oslo during a visit in which part of this research was carried out. N.S.L. is thankful to the Cluster of Excellence Mathematics Münster and her host Wilhelm Winter for warm hospitality during a visit in which part of this research was carried out. We especially thank Sergey Neshveyev for inspiring discussions at the early stages of this project and for several helpful remarks towards the end.

References

[1] Z. Afsar, A. an Huef and I. Raeburn, KMS states on C^{*}-algebras associated to a family of *-commuting local homeomorphisms, J. Math. Anal. Appl. 464 (2018), no. 2, 965-1009.
[2] A. an Huef, B. Nucinkis, C.F. Sehnem, D. Yang Nuclearity of semigroup C*-algebras, J. Funct. Anal. 280 (2021), Paper No. 108793.
[3] Z. Afsar, N. S. Larsen, and S. Neshveyev, KMS-states on Nica-Toeplitz C^{*}-algebras, Comm. Math. Phys. 378 (2020), no. 3, 1875-1929.
[4] E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math., 17(1972), 245-271.
[5] N. Brownlowe, N.S. Larsen and N. Stammeier, C^{*}-algebras of algebraic dynamical systems and right LCM semigroups, Indiana Univ. Math. J. 67 No. 6 (2018), 2453-2486.
[6] C. Bruce, M. Laca, J. Ramagge and A. Sims, Equilibrium states and growth of quasi-lattice ordered monoids, Proc. Amer. Math. Soc. 147 (2019), no. 6, 2389-2404.
[7] T. M. Carlsen, N. S. Larsen, A. Sims, and S. T. Vittadello, Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems, Proc. Lond. Math. Soc. (3), 103 (2011), no. 4, 563-600.
[8] P. Clare, T. Crisp, N. Higson, Adjoint functors between categories of Hilbert modules, J. Institute of Math. Jussieu (2016), 1-36.
[9] J. Crisp and M. Laca, On the Toeplitz algebras of right-angled and finite-type Artin groups, J. Aust. Math. Soc., 72 (2002), no. 2, 223-245.
[10] P. Dehornoy, M. Dyer and C. Hohlweg Garside families in Artin-Tits monoids and low elements in Coxeter groups, C.R. Acad. Sci. Paris, Ser. I, 353, (2015), 403-408.
[11] P. Dehornoy, F. Digne, E. Godelle, D. Krammer and J. Michel, Foundations of Garside Theory, Number 22 in EMS Tracts in Mathematics, European Math. Soc., 2015.
[12] N. J. Fowler, Discrete product systems of Hilbert bimodules, Pacific J. Math., 204 (2002), no. 2, 335-375.
[13] J.-H. Hong, N. S. Larsen, and W. Szymanski, KMS states on Nica-Toeplitz algebras of product systems, Internat. J. Math 23 (12) 125012338 (2012).
[14] T. Kajiwara, C. Pinzari and Y. Watatani, Jones index theory for Hilbert C^{*}-bimodules and its equivalence with conjugation theory, J. Funct. Anal. 215 (2004) no. 1, 1-49.
[15] B. K. Kwaśniewski and N. S. Larsen, Nica-Toeplitz algebras associated with right-tensor C^{*}-precategories over right LCM monoids, Internat. J. Math. 30 No. 2 (2019) 1950013.
[16] B. K. Kwaśniewski and N. S. Larsen, Nica-Toeplitz algebras associated with product systems over right LCM monoids, J. Math. Anal. Appl. 470 (2019) 532-570.
[17] M. Laca and S. Neshveyev, KMS states of quasi-free dynamics on Pimsner algebras, J. Funct. Anal., 211 (2004), no. 2, 457-482.
[18] M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal., 139 (1996), 415-440.
[19] M.V. Lawson, The structure of $0-E$-unitary inverse semigroups I : the monoid case, Proc. Edinb. Math. Soc. 42 (1999), 497-520.
[20] B. Li, Regular dilation and Nica-covariant representation on right LCM semigroups, Integral Equations Operator Theory 91 (2019), no. 4, Art. 36, 35 pp.
[21] M. Laca and B. Li, Amenability and functoriality of right LCM semigroup C^{*}-algebras, Proc. Amer. Math. Soc., 128 (2020), no. 12, 5209-5224.
[22] A. Nica, C^{*}-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory, 27 (1992), 17-52.
[23] D. Olesen and G.K. Pedersen, Some C^{*}-dynamical systems with a single KMS state, Math. Scand. 42 (1978), no. 1, 111-118.
[24] L. Paris. Artin monoids inject in their groups, Comment. Math. Helv., 77 (2002), 609-637.
[25] G. K. Pedersen, C^{*}-algebras and their automorphism groups, Pure and Applied Mathematics, Academic Press, London, 2nd edition, 2018.
[26] M. V. Pimsner, A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed product by \mathbb{Z}, Fields Inst. Commun. 12 (1997), 189-212.
[27] K. Saito, Growth functions for Artin monoids, Proc. Japan Acad., 85, Ser. A (2009), 84-88.
[28] A. Sims and T. Yeend, C^{*}-algebras associated to product systems of Hilbert bimodules, J. Operator Theory 64 (2010), no. 2, 349-376.

Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway.
Email address: lucaeg@student.matnat.uio.no
Department of Mathematics and Statistics, University of Victoria, Victoria BC V8W 2Y2, Canada
Email address: laca@uvic.ca
Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway.
Email address: nadiasl@math.uio.no

[^0]: Date: July 29, 2022.
 M. Laca (ORCiD: 0000-0002-0901-8165).

[^1]: ${ }^{1}$ Note that the definition of \vee-closed subset $F \subset P / \sim$ in $[15$, Section 6.6$]$ ought to be that $[p] \vee[q] \in F$ whenever $[p],[q] \in F$ admit a common upper bound.

